Summary Tree stems from wetland, floodplain and upland forests can produce and emit methane (CH4). Tree CH4 stem emissions have high spatial and temporal variability, but there is no consensus on the biophysical mechanisms that drive stem CH4 production and emissions. Here, we summarize up to 30 opportunities and challenges for stem CH4 emissions research, which, when addressed, will improve estimates of the magnitudes, patterns and drivers of CH4 emissions and trace their potential origin. We identified the need: (1) for both long‐term, high‐frequency measurements of stem CH4 emissions to understand the fine‐scale processes, alongside rapid large‐scale measurements designed to understand the variability across individuals, species and ecosystems; (2) to identify microorganisms and biogeochemical pathways associated with CH4 production; and (3) to develop a mechanistic model including passive and active transport of CH4 from the soil–tree–atmosphere continuum. Addressing these challenges will help to constrain the magnitudes and patterns of CH4 emissions, and allow for the integration of pathways and mechanisms of CH4 production and emissions into process‐based models. These advances will facilitate the upscaling of stem CH4 emissions to the ecosystem level and quantify the role of stem CH4 emissions for the local to global CH4 budget.
Soil respiration (Rs), the soil‐to‐atmosphere CO2 flux produced by microbes and plant roots, is a critical but uncertain component of the global carbon cycle. Our current understanding of the variability and dynamics is limited by the coarse spatial resolution of existing estimates. We predicted annual Rs and associated uncertainty across the world at 1‐km resolution using a quantile regression forest algorithm trained with observations from the global Soil Respiration Database spanning from 1961 to 2011. This model yielded a global annual Rs estimate of 87.9 Pg C/year with an associated global uncertainty of 18.6 (mean absolute error) and 40.4 (root mean square error) Pg C/year. The estimated annual heterotrophic respiration (Rh), derived from empirical relationships with Rs, was 49.7 Pg C/year over the same period. Predicted Rs rates and associated uncertainty varied widely across vegetation types, with the greatest predicted rates of Rs in evergreen broadleaf forests (accounting for 20.9% of global Rs). The greatest prediction uncertainties were in northern latitudes and arid to semiarid ecosystems, suggesting that these areas should be targeted in future measurement campaigns. This study provides predictions of Rs (and associated prediction uncertainty) at unprecedentedly high spatial resolution across the globe that could help constrain local‐to‐global process‐based models. Furthermore, it provides insights into the large variability of Rs and Rh across vegetation classes and identifies regions and vegetation types with poor model performance that should be prioritized for future data collection.
Soil respiration (Rs), the efflux of CO2 from soils to the atmosphere, is a major component of the terrestrial carbon cycle, but is poorly constrained from regional to global scales. The global soil respiration database (SRDB) is a compilation of in situ Rs observations from around the globe that has been consistently updated with new measurements over the past decade. It is unclear whether the addition of data to new versions has produced better‐constrained global Rs estimates. We compared two versions of the SRDB (v3.0 n = 5173 and v5.0 n = 10,366) to determine how additional data influenced global Rs annual sum, spatial patterns and associated uncertainty (1 km spatial resolution) using a machine learning approach. A quantile regression forest model parameterized using SRDBv3 yielded a global Rs sum of 88.6 Pg C year−1, and associated uncertainty of 29.9 (mean absolute error) and 57.9 (standard deviation) Pg C year−1, whereas parameterization using SRDBv5 yielded 96.5 Pg C year−1 and associated uncertainty of 30.2 (mean average error) and 73.4 (standard deviation) Pg C year−1. Empirically estimated global heterotrophic respiration (Rh) from v3 and v5 were 49.9–50.2 (mean 50.1) and 53.3–53.5 (mean 53.4) Pg C year−1, respectively. SRDBv5’s inclusion of new data from underrepresented regions (e.g., Asia, Africa, South America) resulted in overall higher model uncertainty. The largest differences between models parameterized with different SRDVB versions were in arid/semi‐arid regions. The SRDBv5 is still biased toward northern latitudes and temperate zones, so we tested an optimized global distribution of Rs measurements, which resulted in a global sum of 96.4 ± 21.4 Pg C year−1 with an overall lower model uncertainty. These results support current global estimates of Rs but highlight spatial biases that influence model parameterization and interpretation and provide insights for design of environmental networks to improve global‐scale Rs estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.