Soil respiration (Rs), the soil‐to‐atmosphere CO2 flux produced by microbes and plant roots, is a critical but uncertain component of the global carbon cycle. Our current understanding of the variability and dynamics is limited by the coarse spatial resolution of existing estimates. We predicted annual Rs and associated uncertainty across the world at 1‐km resolution using a quantile regression forest algorithm trained with observations from the global Soil Respiration Database spanning from 1961 to 2011. This model yielded a global annual Rs estimate of 87.9 Pg C/year with an associated global uncertainty of 18.6 (mean absolute error) and 40.4 (root mean square error) Pg C/year. The estimated annual heterotrophic respiration (Rh), derived from empirical relationships with Rs, was 49.7 Pg C/year over the same period. Predicted Rs rates and associated uncertainty varied widely across vegetation types, with the greatest predicted rates of Rs in evergreen broadleaf forests (accounting for 20.9% of global Rs). The greatest prediction uncertainties were in northern latitudes and arid to semiarid ecosystems, suggesting that these areas should be targeted in future measurement campaigns. This study provides predictions of Rs (and associated prediction uncertainty) at unprecedentedly high spatial resolution across the globe that could help constrain local‐to‐global process‐based models. Furthermore, it provides insights into the large variability of Rs and Rh across vegetation classes and identifies regions and vegetation types with poor model performance that should be prioritized for future data collection.
Abstract. Field-measured soil respiration (RS, the soil-to-atmosphere CO2 flux) observations were compiled into a global soil respiration database (SRDB) a decade ago, a resource that has been widely used by the biogeochemistry community to advance our understanding of RS dynamics. Novel carbon cycle science questions require updated and augmented global information with better interoperability among datasets. Here, we restructured and updated the global RS database to version SRDB-V5. The updated version has all previous fields revised for consistency and simplicity, and it has several new fields to include ancillary information (e.g., RS measurement time, collar insertion depth, collar area). The new SRDB-V5 includes published papers through 2017 (800 independent studies), where total observations increased from 6633 in SRDB-V4 to 10 366 in SRDB-V5. The SRDB-V5 features more RS data published in the Russian and Chinese scientific literature and has an improved global spatio-temporal coverage and improved global climate space representation. We also restructured the database so that it has stronger interoperability with other datasets related to carbon cycle science. For instance, linking SRDB-V5 with an hourly timescale global soil respiration database (HGRsD) and a community database for continuous soil respiration (COSORE) enables researchers to explore new questions. The updated SRDB-V5 aims to be a data framework for the scientific community to share seasonal to annual field RS measurements, and it provides opportunities for the biogeochemistry community to better understand the spatial and temporal variability in RS, its components, and the overall carbon cycle. The database can be downloaded at https://github.com/bpbond/srdb and will be made available in the Oak Ridge National Laboratory's Distributed Active Archive Center (ORNL DAAC). All data and code to reproduce the results in this study can be found at https://doi.org/10.5281/zenodo.3876443 (Jian and Bond-Lamberty, 2020).
Abstract. Country-specific soil organic carbon (SOC) estimates are the baseline for the Global SOC Map of the Global Soil Partnership (GSOCmap-GSP). This endeavor is key to explaining the uncertainty of global SOC estimates but requires harmonizing heterogeneous datasets and building country-specific capacities for digital soil mapping (DSM). We identified country-specific predictors for SOC and tested the performance of five predictive algorithms for mapping SOC across Latin America. The algorithms included support vector machines (SVMs), random forest (RF), kernel-weighted nearest neighbors (KK), partial least squares regression (PL), and regression kriging based on stepwise multiple linear models (RK). Country-specific training data and SOC predictors (5 × 5 km pixel resolution) were obtained from ISRIC -World Soil Information. Temperature, soil type, vegetation indices, and topographic constraints were the best predictors for SOC, but country-specific predictors and their respective weights varied across Latin America. We compared a large diversity of country-specific datasets and models, and were able to explain SOC variability in a range between ∼ 1 and ∼ 60 %, with no universal predictive algorithm among countries. A regional (n = 11 268 SOC estimates) ensemble of these five algorithms was able to explain ∼ 39 % of SOC variability from repeated 5-fold cross-validation. We report a combined SOC stock of 77.8 ± 43.6 Pg (uncertainty represented by the full conditional response of independent model residuals) across Latin America. SOC stocks were higher in tropical forests (30 ± 16.5 Pg) and croplands (13 ± 8.1 Pg). Country-specific and regional ensembles revealed spatial discrepancies across geopolitical borders, higher elevations, and coastal plains, but provided similar regional stocks (77.8 ± 42.2 and 76.8 ± 45.1 Pg, respectively). These results are conservative compared to global estimates (e.g., SoilGrids250m 185.8 Pg, the Harmonized World Soil Database 138.4 Pg, or the GSOCmap-GSP 99.7 Pg). Countries with large area (i.e., Brazil, Bolivia, Mexico, Peru) and large spatial SOC heterogeneity had lower SOC stocks per unit area and larger uncertainty in their predictions. We highlight that expert opinion is needed to set boundary prediction limits to avoid unrealistically high modeling estimates. For maximizing explained variance while minimizing prediction bias, the selection of predictive algorithms for SOC mapping should consider density of available data and variability of country-specific environmental gradients. This study highlights the large degree of spatial uncertainty in SOC estimates across Latin America. We provide a framework for improving country-specific mapping efforts and reducing current discrepancy of global, regional, and country-specific SOC estimates.
Soil respiration (Rs), the efflux of CO2 from soils to the atmosphere, is a major component of the terrestrial carbon cycle, but is poorly constrained from regional to global scales. The global soil respiration database (SRDB) is a compilation of in situ Rs observations from around the globe that has been consistently updated with new measurements over the past decade. It is unclear whether the addition of data to new versions has produced better‐constrained global Rs estimates. We compared two versions of the SRDB (v3.0 n = 5173 and v5.0 n = 10,366) to determine how additional data influenced global Rs annual sum, spatial patterns and associated uncertainty (1 km spatial resolution) using a machine learning approach. A quantile regression forest model parameterized using SRDBv3 yielded a global Rs sum of 88.6 Pg C year−1, and associated uncertainty of 29.9 (mean absolute error) and 57.9 (standard deviation) Pg C year−1, whereas parameterization using SRDBv5 yielded 96.5 Pg C year−1 and associated uncertainty of 30.2 (mean average error) and 73.4 (standard deviation) Pg C year−1. Empirically estimated global heterotrophic respiration (Rh) from v3 and v5 were 49.9–50.2 (mean 50.1) and 53.3–53.5 (mean 53.4) Pg C year−1, respectively. SRDBv5’s inclusion of new data from underrepresented regions (e.g., Asia, Africa, South America) resulted in overall higher model uncertainty. The largest differences between models parameterized with different SRDVB versions were in arid/semi‐arid regions. The SRDBv5 is still biased toward northern latitudes and temperate zones, so we tested an optimized global distribution of Rs measurements, which resulted in a global sum of 96.4 ± 21.4 Pg C year−1 with an overall lower model uncertainty. These results support current global estimates of Rs but highlight spatial biases that influence model parameterization and interpretation and provide insights for design of environmental networks to improve global‐scale Rs estimates.
Abstract. Field-measured soil respiration (RS, the soil-to-atmosphere CO2 flux) observations were compiled into a global soil respiration database (SRDB) a decade ago, a resource that has been widely used by the biogeochemistry community to advance our understanding of RS dynamics. Novel carbon cycle sciences questions require updated and augmented global information with better interoperability among datasets. Here, we restructured and updated the global RS database to version SRDB-V5. The updated version has all previous fields revised for consistency and simplicity, and it has several new fields to include ancillary information (e.g., RS measurement time, collar insertion depth, collar area). The new SRDB-V5 includes published papers through 2017 (800 independent studies) where total observations increased from 6633 in SRDB-V4 to 10366 in SRDB-V5. The SRDB-V5 features more RS data published in Russian and Chinese scientific literature, has an improved global spatio-temporal coverage, and improved global climate-space representation. We also restructured the database so that it has stronger interoperability with other datasets related to carbon-cycle science. For instance, linking SRDB-V5 with an hourly timescale global soil respiration database (HGRsD) and an open community database for continuous soil respiration and other chamber flux data (COSORE) enables researchers to explore new questions. The updated SRDB-V5 aims to be a data framework for the scientific community to share seasonal to annual field RS measurements, and it provides opportunities for the biogeochemistry community to better understand the spatial and temporal variability of RS, its components, and the overall carbon cycle. The database can be downloaded at https://github.com/bpbond/srdb and ORNL DAAC [Submitted]. All data and code to reproduce the results in this study can be found at: Jian, Jinshi, Bond-Lamberty, Ben. (2020). jinshijian/ESSD: SRDB-V5 first release (Version v1.0.0) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3876443.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.