Robotic Materials are materials that have sensing, computation and, possibly actuation, distributed throughout the bulk of the material. In such a material, we envision semiconducting polymer based sensing, actuation, and information processing for on-board decision making to be designed, in tandem, with the smart product that will be implemented with the smart material. Prior work in printing polymer semiconductors for sensing and cognition have focused on highly energetic inkjet printing. Alternatively, we are developing liquid polymer extrusion processes to work hand-in-hand with existing solid polymer extrusion processes (such as Fused Deposition Manufacturing - FDM) to simultaneously deposit sensing, computation, actuation and structure. We demonstrate the successful extrusion printing of conductors and capacitors to impedance-match a new, higher-performance organic transistor design that solves the cascading problem of the device previously reported and is more amenable to liquid extrusion printing. Consequently, these printed devices are integrated into a sheet material that is folded into a 3-D, six-legged walking machine with attached electric motor.
Electroactive polymers are a class of materials capable of reallocating their shape in response to an electric field while also having the ability to harvest electrical energy when the materials are mechanically deformed. Electroactive polymers can therefore be used as sensors, actuators, and energy harvesters. The parameters for manufacturing flexible electroactive polymers are complex and rate limiting due to number of steps, their necessity, and time intensity of each step. Successful 3D printing manufacturing processes for electroactive polymers will allow for scalability and flexibility beyond current limitations, improving the field, opening additional manufacturing possibilities, and increasing output. The goal for this research is to use additive manufacturing techniques to print conductive and dielectric substrates for building flexible circuits and sensors. Printing flexible conductive layers and substrates together allows for added creativity in design and application. In this work we have successfully demonstrated additive production of a simple flexible circuit using exclusively additive manufacturing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.