A homogeneous system for the selective, catalytic oxidation of methane to methanol via methyl bisulfate is reported. The net reaction catalyzed by mercuric ions, Hg(II), is the oxidation of methane by concentrated sulfuric acid to produce methyl bisulfate, water, and sulfur dioxide. The reaction is efficient. At a methane conversion of 50 percent, 85 percent selectivity to methyl bisulfate ( approximately 43 percent yield; the major side product is carbon dioxide) was achieved at a molar productivity of 10(-7) mole per cubic centimeter per second and Hg(II) turnover frequency of 10(-3) per second. Separate hydrolysis of methyl bisulfate and reoxidation of the sulfur dioxide with air provides a potentially practical scheme for the oxidation of methane to methanol with molecular oxygen. The primary steps of the Hg(II)-catalyzed reaction were individually examined and the essential elements of the mechanism were identified. The Hg(II) ion reacts with methane by an electrophilic displacement mechanism to produce an observable species, CH(3)HgOSO(3)H, 1. Under the reaction conditions, 1 readily decomposes to CH(3)OSO(3)H and the reduced mercurous species, Hg(2)(2+) The catalytic cycle is completed by the reoxidation of Hg(2)(2+) with H(2)SO(4) to regenerate Hg(II) and byproducts SO(2) and H(2)O. Thallium(III), palladium(II), and the cations of platinum and gold also oxidize methane to methyl bisulfate in sulfuric acid.
Thin SiO 2 films were grown on a Ru(0001) single crystal and studied by photoelectron spectroscopy, infrared spectroscopy and scanning probe microscopy. The experimental results in combination with density functional theory calculations provide compelling evidence for the formation of crystalline, double-layer sheet silica weakly bound to a metal substrate. DOI: 10.1103/PhysRevLett.105.146104 PACS numbers: 68.35.Àp, 68.47.Gh, 68.55.Àa Silicon dioxide (SiO 2 ) plays a key role in many modern technologies and applications that range from insulating layers in integrated circuits to supports for metal and oxide clusters in catalysts. For better understanding of structureproperty relationships on silica-based materials, particularly of reduced dimensions, thin silica films grown on metal single crystal substrates are suggested as suitable model systems that allow the facile application of many ''surface science'' techniques. It has recently been shown that crystalline silica films and nanowires can be grown on Mo(112) [1][2][3][4][5]. The ultrathin film consists of a monolayer honeycomblike network of corner-sharing [SiO 4 ] tetrahedra, thus resulting in a SiO 2:5 stoichiometry of the film. The Si atoms in these films can be partly substituted by Al in the course of preparing metal supported aluminosilicate films [6], which is the first step towards experimental modeling of catalytic centers in zeolitelike materials. However, attempts to grow thicker silica films on the Mo substrates resulted in amorphous structures [7][8][9], most likely due to the formation of strong Si-O-Mo bonds at the interface that govern the growth mode [9]. Recently, the preparation of crystalline silica films on other supports such as Pd(100) [10] and Ni(111) [11] has been reported. However, the atomic structure of the films, film surface termination, and the nature of the silica-metal interface were not determined.In this Letter, we report on the preparation and the atomic structure of well-defined silica films on Ru(0001). The experimental results, obtained by photoelectron and vibrational spectroscopies and high-resolution scanning probe microscopy, are complemented by density functional theory calculations which together provide compelling evidence for the formation of a double-layer sheet silicate, with a SiO 2 stoichiometric composition, weakly bound to a metal support. The results open new perspectives for employing a ''surface science'' approach to understand the reactivity of silicate surfaces consisting of hydrophobic Si-O-Si bonds, such as those of microporous all-silica zeolites [12]. Also, these films can be used as model supports for catalytically active metal and oxide clusters [4,13].The experiments were performed in an ultrahigh vacuum chamber equipped with low energy electron diffraction (LEED) and Auger electron spectroscopy, x-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectroscopy (IRAS), and scanning tunneling microscopy (STM). Atomically resolved atomic force microscopy (AFM) and STM image...
A combination of density functional theory calculations and photoelectron spectroscopy provides new insights into the atomistic picture of ultrathin silica films grown on Ru(0001). The silica film features a double-layer silicate sheet formed by corner-sharing [SiO 4 ] tetrahedra and is weakly bound to the Ru(0001) substrate. This allows oxygen atoms to reversibly adsorb directly on the metal surface underneath the silica film. We demonstrate that the amount of adsorbed oxygen can be reversibly varied by vacuum annealing and oxidation, which in turn result in gradual changes of the silica/Ru electronic states. This finding opens the possibility for tuning the electronic properties of oxide/metal systems without altering the thickness or the structure of an oxide overlayer.
Ultraviolet photoelectron spectroscopy in an ion beam was used to investigate the electronic properties of isolated DNA oligonucleotides [dA(5)-4H](4-) and [dT(5)-4H](4-), carrying four excess negative charges. We find the fourth adiabatic electron affinity to be slightly negative for [dA(5)-4H](4-), while it is positive for [dT(5)-4H](4-). This implies a significant influence of the base composition on energetics, which is in turn relevant for analytic applications and also for charge transport properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.