Ionic liquids have been suggested as new engineering fluids, namely in the area of heat transfer, as alternatives to current biphenyl and diphenyl oxide, alkylated aromatics and dimethyl polysiloxane oils, which degrade above 200 °C and pose some environmental problems. Recently, we have proposed 1-ethyl-3-methylimidazolium methanesulfonate, [C2mim][CH3SO3], as a new heat transfer fluid, because of its thermophysical and toxicological properties. However, there are some interesting points raised in this work, namely the possibility of the existence of liquid metastability below the melting point (303 K) or second order-disorder transitions (λ-type) before reaching the calorimetric freezing point. This paper analyses in more detail this zone of the phase diagram of the pure fluid, by reporting accurate thermal-conductivity measurements between 278 and 355 K with an estimated uncertainty of 2% at a 95% confidence level. A new value of the melting temperature is also reported, Tmelt = 307.8 ± 1 K. Results obtained support liquid metastability behaviour in the solid-phase region and permit the use of this ionic liquid at a heat transfer fluid at temperatures below its melting point. Thermal conductivity models based on Bridgman theory and estimation formulas were also used in this work, failing to predict the experimental data within its uncertainty.
A new determination of the molar gas constant was performed from measurements of the speed of sound in argon at the triple point of water and extrapolation to zero pressure. A new resonant cavity was used. This is a triaxial ellipsoid whose walls are gold-coated steel and which is divided into two identical halves that are bolted and sealed with an O-ring. Microwave and electroacoustic traducers are located in the northern and southern parts of the cavity, respectively, so that measurements of microwave and acoustic frequencies are carried out in the same experiment. Measurements were taken at pressures from 600 kPa to 60 kPa and at 273.16 K. The internal equivalent radius of the cavity was accurately determined by microwave measurements and the first four radial symmetric acoustic modes were simultaneously measured and used to calculate the speed of sound. The improvements made using the new cavity have reduced by half the main contributions to the uncertainty due to the radius determination using microwave measurements which amounts to 4.7 parts in 10 6 and the acoustic measurements, 4.4 parts in 10 6 , where the main contribution (3.7 parts in 10 6) is the relative excess half-widths associated with the limit of our acoustic model, compared with our previous measurements. As a result of all the improvements with the new cavity and the measurements performed, we determined the molar gas constant R = (8.314449 0.000056) J•K-1 •mol-1 which corresponds to a relative standard uncertainty of 6.7 parts in 10 6. The value reported in this paper lies-1.3 parts 2 in 10 6 below the recommended value of CODATA 2014, although still within the range consistent with it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.