This study presents an innovative method for creating a highly porous surface with nanoscale roughness on biologically relevant polymers, specifically polyurethane (PU) and polycaprolactone (PCL). Nanoembossed polyurethane (NPU) and nanoembossed polycaprolactone (NPCL) were produced by the casting of PU and PCL over a plasma-deposited, spiky nanofeatured crystalline titanium (Ti) surface. The variables used in the process of making the spiky Ti surface can be altered to change the physical properties of the spiky particles, and thus, the cast polymer substrate surface can be altered. The spiky Ti surface is reusable to produce additional nanopolymer castings. In this study, control plain PU and PCL polymers were produced by casting the polymers over a plain Ti surface (without spikes). All polymer surface morphologies were characterized using both scanning electron microscopy and atomic force microscopy, and their surface energies were measured using liquid contact angle measurements. The results revealed that both NPU and NPCL possessed a higher degree of nanometer surface roughness and higher surface energy compared with their respective unaltered polymers. Further, an in vitro study was carried out to determine chondrocyte (cartilage-producing cells) functions on NPU and NPCL compared with on control plain polymers. Results of this study provided evidence of increased chondrocyte numbers on NPU and NPCL compared with their respective plain polymers after periods of up to 7 days. Moreover, the results provide evidence of greater intracellular protein production and collagen secretion by chondrocytes cultured on NPU and NPCL compared with control plain polymers. In summary, the present in vitro results of increased chondrocyte functions on NPU and NPCL suggest these materials may be suitable for numerous polymer-based cartilage tissue-engineering applications and, thus, deserve further investigation.
A large amount of work is currently being conducted to design, fabricate, and characterize materials coated or immobilized with bioactive molecules for tissue engineering applications. Here, a novel method, molecular plasma deposition (MPD), is introduced with can efficiently coat materials with numerous bioactive peptides. Specifically, here, RGDS (arginine-glycine-aspartic acid-serine), KRSR (lysine-arginine-serine-arginine), and IKVAV (isoleucine-lysine-valine-alanine-valine) were coated on anodized nanotubular titanium using MPD. The anodized nanotubular titanium surfaces were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), and water contact angle measurements. Peptide coatings were examined by X-ray photoelectron spectroscopy (XPS) and an amine reactive fluorescence molecule, 3-(4 carboxybenzoyl)quinoline 2-carboxaldehyde (CBQCA). Electrospray ionization (ESI) was used to confirm peptide integrity. Osteoblast (bone-forming cell) density was determined on the materials of interest. Results confirmed peptide coatings and showed that the MPD RGDS and KRSR coatings on anodized nanotubular titanium increased osteoblast density compared with uncoated substrates and those coated with IKVAV and a control peptide (RGES) after 4 h and 7 days. SEM confirmed differences in the morphology of the attached cells. These results, to the best of our knowledge, are the first reports using MPD to efficiently create peptide coatings to increase osteoblast density on metals commonly used in orthopedics. Since MPD represents a quick, inexpensive, and versatile technique to coat implants with peptides, it should be further studied for numerous implant applications.
In order to begin to prepare a novel orthopedic implant that mimics the natural bone environment, the objective of this in vitro study was to synthesize nanocrystalline hydroxyapatite (NHA) and coat it on titanium (Ti) using molecular plasma deposition (MPD). NHA was synthesized through a wet chemical process followed by a hydrothermal treatment. NHA and micron sized hydroxyapatite (MHA) were prepared by processing NHA coatings at 500°C and 900°C, respectively. The coatings were characterized before and after sintering using scanning electron microscopy, atomic force microscopy, and X-ray diffraction. The results revealed that the post-MPD heat treatment of up to 500°C effectively restored the structural and topographical integrity of NHA. In order to determine the in vitro biological responses of the MPD-coated surfaces, the attachment and spreading of osteoblasts (bone-forming cells) on the uncoated, NHA-coated, and MHA-coated anodized Ti were investigated. Most importantly, the NHA-coated substrates supported a larger number of adherent cells than the MHA-coated and uncoated substrates. The morphology of these cells was assessed by scanning electron microscopy and the observed shapes were different for each substrate type. The present results are the first reports using MPD in the framework of hydroxyapatite coatings on Ti to enhance osteoblast responses and encourage further studies on MPD-based hydroxyapatite coatings on Ti for improved orthopedic applications.
Biochemistry Biochemistry Z 0250 Assembly of Manganese-Oxo Clusters in Solution as Models for the Photosynthetic Oxygen-Evolving Complex -[16 refs.]. -(SHEATS, J. E.; MICAI, K.; BLEIER, S.; STOREY, D.; SELLITO, E.; CARRELL, T. G.; MANEIRO, M.; BOURLES, E.; DISMUKES, G. C.; RHEINGOLD, A. L.; et al.; Macromol. Symp. 186 (2002) 29-34; Dep. Chem., Rider Univ., Lawrenceville, NJ 08648, USA; Eng.) -Lindner 08-275
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.