Context: The influence of food and beverage labeling (food labeling) on consumer behaviors, industry responses, and health outcomes is not well established. Evidence acquisition: PRISMA guidelines were followed. Ten databases were searched in 2014 for studies published after 1990 evaluating food labeling and consumer purchases/orders, intakes, metabolic risk factors, and industry responses. Data extractions were performed
BackgroundNon-small cell lung cancer (NSCLC) patients benefit from targeted therapies both in first- and second-line treatment. Nevertheless, molecular profiling of lung cancer tumors after first disease progression is seldom performed. The analysis of circulating tumor DNA (ctDNA) enables not only non-invasive biomarker testing but also monitoring tumor response to treatment. Digital PCR (dPCR), although a robust approach, only enables the analysis of a limited number of mutations. Next-generation sequencing (NGS), on the other hand, enables the analysis of significantly greater numbers of mutations.MethodsA total of 54 circulating free DNA (cfDNA) samples from 52 NSCLC patients and two healthy donors were analyzed by NGS using the Oncomine™ Lung cfDNA Assay kit and dPCR.ResultsLin’s concordance correlation coefficient and Pearson’s correlation coefficient between mutant allele frequencies (MAFs) assessed by NGS and dPCR revealed a positive and linear relationship between the two data sets (ρc = 0.986; 95% confidence interval [CI] = 0.975–0.991; r = 0.987; p < 0.0001, respectively), indicating an excellent concordance between both measurements. Similarly, the agreement between NGS and dPCR for the detection of the resistance mutation p.T790M was almost perfect (K = 0.81; 95% CI = 0.62–0.99), with an excellent correlation in terms of MAFs (ρc = 0.991; 95% CI = 0.981–0.992 and Pearson’s r = 0.998; p < 0.0001). Importantly, cfDNA sequencing was successful using as low as 10 ng cfDNA input.ConclusionsMAFs assessed by NGS were highly correlated with MAFs assessed by dPCR, demonstrating that NGS is a robust technique for ctDNA quantification using clinical samples, thereby allowing for dynamic genomic surveillance in the era of precision medicine.
IntroductionWHO guidelines on iron supplementation among children call for further research to identify the optimal schedule, duration, dose and cosupplementation regimen.MethodsA systematic review and meta-analysis of randomised controlled trials was undertaken. Randomised controlled trials providing ≥30 days of oral iron supplementation versus placebo or control to children and adolescents aged <20 years were eligible. Random-effects meta-analysis was used to summarise the potential benefits and harms of iron supplementation. Meta-regression was used to estimate iron effect heterogeneity.Results129 trials with 201 intervention arms randomised 34 564 children. Frequent (3–7/week) and intermittent (1–2/week) iron regimens were similarly effective at decreasing anaemia, iron deficiency and iron deficiency anaemia (p heterogeneity >0.05), although serum ferritin levels and (after adjustment for baseline anaemia) haemoglobin levels increased more with frequent supplementation. Shorter (1–3 months) versus longer (7+ months) durations of supplementation generally showed similar benefits after controlling for baseline anaemia status, except for ferritin which increased more with longer duration of supplementation (p=0.04). Moderate-dose and high-dose supplements were more effective than low-dose supplements at improving haemoglobin (p=0.004), ferritin (p=0.008) and iron deficiency anaemia (p=0.02), but had similar effects to low-dose supplements for overall anaemia. Iron supplementation provided similar benefits when administered alone or in combination with zinc or vitamin A, except for an attenuated effect on overall anaemia when iron was cosupplemented with zinc (p=0.048).ConclusionsWeekly and shorter duration iron supplementation at moderate or high doses might be optimal approaches for children and adolescents at risk of deficiency.Trial registration numberCRD42016039948.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.