We report on the photovoltaic characteristics of organic/inorganic hybrid solar cells fabricated on 'flexible' transparent substrates. The solar cell device is composed of ZnO nanorod array and the bulk heterojunction structured organic layer which is the blend of poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C61 butyric acid methyl ester (PCBM). The ZnO nanorod array was grown on indium tin oxide (ITO)-coated polyethylene terephthalate (PET) substrates via a low-temperature (85 • C) aqueous solution process. The blend solution consisting of conjugated polymer P3HT and fullerene PCBM was spin coated at a low spinning rate of 400 rpm on top of the ZnO nanorod array structure and then the photoactive layer was slow dried at room temperature in air to promote its infiltration into the nanorod network. As a top electrode, silver was sputtered on top of the photoactive layer. The flexible solar cell with the structure of PET/ITO/ZnO thin film/ZnO nanorods/P3HT:PCBM/Ag exhibited a photovoltaic performance with an open circuit voltage (V OC ) of 0.52 V, a short circuit current density (J SC ) of 9.82 mA cm −2 , a fill factor (FF) of 35% and a power conversion efficiency (η) of 1.78%. All the measurements were performed under 100 mW cm −2 of illumination with an air mass 1.5 G filter. To the best of our knowledge, this is the first presentation of investigation into the fabrication and characterization of organic/inorganic hybrid solar cells based on bulk heterojunction structured conjugated polymer/fullerene photoactive layer and ZnO nanorod array constructed on flexible transparent substrates.
We report the use of amide coupling chemistry to covalently link five different biofunctional groups onto an anionic water-soluble poly(phenylene ethynylene) (PPE) polymer. Two of the biofunctionalized PPEs are used in prototype applications, including pH sensing and flow cytometry labeling. The PPE is functionalized with carboxylate (R-CO2 –) and sulfonate (R-SO3 –) ionic groups. By using an activated ester, the amine-functionalized groups are covalently linked to the PPE polymer via amide linkages. The reaction chemistry is optimized using biotin-ethylene diamine, making it possible to control the loading of the biotin functionality on the PPE chains. Using the optimized approach, a family of five PPEs were prepared that contain biotin, rhodamine, cholesterol, mannose, or folic acid moieties appended to the polymer backbones. The rhodamine- and biotin-modified PPEs were further applied for pH response and flow cytometry applications. The reported approach can be utilized for other classes of water-soluble conjugated polymers, allowing facile development of a variety of new functionalized water-soluble conjugated polymers for a range of applications including sensing, bioimaging, and flow cytometry analysis.
Metal/oxide interactions mediated by charge transfer influence reactivity and stability in numerous heterogeneous catalysts. In this work, we use density functional theory (DFT) and statistical learning (SL) to derive models for predicting how the adsorption strength of metal atoms on MgO(100) surfaces can be enhanced by modifications of the support. MgO(100) in its pristine form is relatively unreactive, and thus is ideal for examining ways in which its electronic interactions with metals can be enhanced, tuned, and controlled. We find that the charge transfer characteristics of MgO are readily modified either by adsorbates on the surface (e.g., H, OH, F, and NO 2) or dopants in the oxide lattice (e.g., Li, Na, B, and Al). We use SL methods (i.e., LASSO, Horseshoe prior, and Dirichlet-Laplace prior) that are trained against DFT data to identify physical descriptors for predicting how the adsorption energy of metal atoms will change in response to support modification. These SL-derived feature selection tools are used to screen through more than one million candidate descriptors that are generated from simple chemical properties of the adsorbed metals, MgO, dopants, and adsorbates. Among the tested SL tools, we demonstrate that Dirichlet-Laplace prior predicts metal adsorption energies on MgO most accurately, while also identifying descriptors that are most transferable to chemically similar oxides, such as CaO, BaO, and ZnO.
We report a water-soluble poly(phenylene ethynylene) (PPE-Pt(IV)) that is functionalized with oxidized oxaliplatin Pt(IV) units and its use for photoactivated chemotherapy. The photoactivation strategy is based on photoinduced electron transfer from the PPE backbone to oxaliplatin Pt(IV) as an electron acceptor; this process triggers the release of oxaliplatin, which is a clinically used anticancer drug. Mechanistic studies carried out using steady-state and time-resolved fluorescence spectroscopy coupled with picosecond–nanosecond transient absorption support the hypothesis that electron transfer triggers the drug release. Photoactivation is effective, producing oxaliplatin with a good chemical yield in less than 1 h of photolysis (400 nm, 5 mW cm–2). Photorelease of oxaliplatin from PPE-Pt(IV) can also be effected with two-photon excitation by using 100 fs pulsed light at 725 nm. Cytotoxicity studies using SK-OV-3 human ovarian cancer cells demonstrate that without photoactivation PPE-Pt(IV) is not cytotoxic at concentrations up to 10 μM in polymer repeating unit (PRU) concentration. However, following a short period of 460 nm irradiation, oxaliplatin is released from PPE-Pt(IV), resulting in cytotoxicity at concentrations as low as 2.5 μM PRU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.