Brazil experienced a large dengue virus (DENV) epidemic in 2019, highlighting a continuous struggle with effective control and public health preparedness. Using Oxford Nanopore sequencing, we led field and classroom initiatives for the monitoring of DENV in Brazil, generating 227 novel genome sequences of DENV1-2 from 85 municipalities (2015–2019). This equated to an over 50% increase in the number of DENV genomes from Brazil available in public databases. Using both phylogenetic and epidemiological models we retrospectively reconstructed the recent transmission history of DENV1-2. Phylogenetic analysis revealed complex patterns of transmission, with both lineage co-circulation and replacement. We identified two lineages within the DENV2 BR-4 clade, for which we estimated the effective reproduction number and pattern of seasonality. Overall, the surveillance outputs and training initiative described here serve as a proof-of-concept for the utility of real-time portable sequencing for research and local capacity building in the genomic surveillance of emerging viruses.
Objective To describe the prevalence and clinical spectrum of microcephaly in South America for the period 2005-14, before the start of the Zika epidemic in 2015, as a baseline for future surveillance as the Zika epidemic spreads and as other infectious causes may emerge in future. Design Prevalence and case-control study. Data sources ECLAMC (Latin American Collaborative Study of Congenital Malformations) database derived from 107 hospitals in 10 South American countries, 2005 to 2014. Data on microcephaly cases, four non-malformed controls per case, and all hospital births (all births for hospital based prevalence, resident within municipality for population based prevalence). For 2010-14, head circumference data were available and compared with Intergrowth charts. Results 552 microcephaly cases were registered, giving a hospital based prevalence of 4.4 (95% confidence interval 4.1 to 4.9) per 10 000 births and a population based prevalence of 3.0 (2.7 to 3.4) per 10 000. Prevalence varied significantly between countries and between regions and hospitals within countries. Thirty two per cent (n=175) of cases were prenatally diagnosed; 29% (n=159) were perinatal deaths. Twenty three per cent (n=128) were associated with a diagnosed genetic syndrome, 34% (n=189) polymalformed without a syndrome diagnosis, 12% (n=65) with associated neural malformations, and 26% (n=145) microcephaly only. In addition, 3.8% (n=21) had a STORCH (syphilis, toxoplasmosis, other including HIV, rubella, cytomegalovirus, and herpes simplex) infection diagnosis and 2.0% (n=11) had consanguineous parents. Head circumference measurements available for 184/235 cases in 2010-14 showed 45% (n=82) more than 3 SD below the mean, 24% (n=44) between 3 SD and 2 SD below the mean, and 32% (n=58) larger than −2 SD. Conclusion Extrapolated to the nearly 7 million annual births in South America, an estimated 2000-2500 microcephaly cases were diagnosed among births each year before the Zika epidemic began in 2015. Clinicians are using more than simple metrics to make microcephaly diagnoses. Endemic infections are important enduring causes of microcephaly.
The early detection of congenital anomaly epidemics occurs when comparing current with previous frequencies in the same population. The success of epidemiologic surveillance depends on numerous factors, including the accuracy of the rates available in the base period, wide population coverage, and short periodicity of analysis. This study aims to describe the Latin American network of congenital malformation surveillance: ReLAMC, created to increase epidemiologic surveillance in Latin America. We describe the main steps, tasks, strategies used, and preliminary results. From 2017 to 2019, five national registries (Argentina [RENAC], Brazil [SINASC/SIM‐BRS], Chile [RENACH], Costa Rica [CREC], Paraguay [RENADECOPY‐PNPDC]), six regional registries (Bogotá [PVSDC‐Bogota], Cali [PVSDC‐Cali], Maule [RRMC SSM], Nicaragua [SVDC], Nuevo‐León [ReDeCon HU], São Paulo [SINASC/SIM‐MSP]) and the ECLAMC hospital network sent data to ReLAMC on a total population of 9,152,674 births, with a total of 101,749 malformed newborns (1.1%; 95% CI 1.10–1.12). Of the 9,000,651 births in countries covering both live and stillbirths, 88,881 were stillborn (0.99%; 95% CI 0.98–0.99), and among stillborns, 6,755 were malformed (7.61%; 95% CI 7.44–7.79). The microcephaly rate was 2.45 per 10,000 births (95% CI 2.35–2.55), hydrocephaly 3.03 (2.92–3.14), spina bifida 2.89 (2.78–3.00), congenital heart defects 15.53 (15.27–15.79), cleft lip 2.02 (1.93–2.11), cleft palate and lip 2.77 (2.66–2.88), talipes 2.56 (2.46–2.67), conjoined twins 0.16 (0.14–0.19), and Down syndrome 5.33 (5.18–5.48). Each congenital anomaly showed heterogeneity in prevalence rates among registries. The harmonization of data in relation to operational differences between registries is the next step in developing the common ReLAMC database.
Organ shape evolves through cross-generational changes in developmental patterns at cellular and/or tissue levels that ultimately alter tissue dimensions and final adult proportions. Here, we investigated the cellular basis of an artificially selected divergence in the outline shape of Drosophila melanogaster wings, by comparing flies with elongated or rounded wing shapes but with remarkably similar wing sizes. We also tested whether cellular plasticity in response to developmental temperature was altered by such selection. Results show that variation in cellular traits is associated with wing shape differences, and that cell number may play an important role in wing shape response to selection. Regarding the effects of developmental temperature, a size-related plastic response was observed, in that flies reared at 16 °C developed larger wings with larger and more numerous cells across all intervein regions relative to flies reared at 25 °C. Nevertheless, no conclusive indication of altered phenotypic plasticity was found between selection strains for any wing or cellular trait. We also described how cell area is distributed across different intervein regions. It follows that cell area tends to decrease along the anterior wing compartment and increase along the posterior one. Remarkably, such pattern was observed not only in the selected strains but also in the natural baseline population, suggesting that it might be canalized during development and was not altered by the intense program of artificial selection for divergent wing shapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.