Baculoviruses infect insects, producing two distinct phenotypes during the viral life cycle: the budded virus (BV) and the occlusion-derived virus (ODV) for intra-and inter-host spread, respectively. Since the 1980s, several countries have been using Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) as a biological control agent against the velvet bean caterpillar, A. gemmatalis. The genome of AgMNPV isolate 2D (AgMNPV-2D) carries at least 152 potential genes, with 24 that possibly code for structural proteins. Proteomic studies have been carried out on a few baculoviruses, with six ODV and two BV proteomes completed so far. Moreover, there are limited data on virion proteins carried by AgMNPV-2D. Therefore, structural proteins of AgMNPV-2D were analysed by MALDI-quadrupole-TOF and liquid chromatography MS/MS. A total of 44 proteins were associated with the ODV and 33 with the BV of AgMNPV-2D. Although 38 structural proteins were already known, we found six new proteins in the ODV and seven new proteins carried by the AgMNPV-2D BV. Eleven cellular proteins that were found on several other enveloped viruses were also identified, which are possibly carried with the virion. These findings may provide novel insights into baculovirus biology and their host interaction. Moreover, our data may be helpful in subsequent applied studies aiming to improve AgMNPV use as a biopesticide and a biotechnology tool for gene expression or delivery. INTRODUCTIONTwo distinct phenotypes occur during the life cycle of baculoviruses: the budded virus (BV) responsible for intrahost systemic infection, and the occlusion-derived virus (ODV) that is essential for inter-host and oral primary infection in the environment (Keddie et al., 1989). At the end of the viral cycle, the ODV form is occluded in a paracrystalline protein matrix, which forms the occlusion bodies (OBs) (Blissard & Rohrmann, 1990;Castro et al., 1997;King & Possee, 1992). Members of the family Baculoviridae are insect-specific viruses and due to their high specificity have become widely used as biological control agents of pests in agriculture and forestry (Moscardi, 1999;O'Reilly et al., 1993;Szewczyk et al., 2006;Tanada & Kaya, 1993). In addition to their classical use as biopesticides, some baculoviruses are also used for recombinant protein production (Maeda, 1989;Smith et al., 1983), and more recently as vectors for human gene therapy (Airenne et al., 2013;Kost et al., 2005).Baculoviruses have a dsDNA genome contained in a rodshaped nucleocapsid, coding for 100-180 proteins (Herniou et al., 2003;Slack & Arif, 2007). Members of the family Baculoviridae are divided into two groups based on their OB morphology: nucleopolyhedrovirus (NPV) and granulovirus (GV). The lepidopteran NPVs are subdivided into groups I and II, following phylogenetic studies done with the polyhedrin gene (polh) (Zanotto et al., 1993), a larger set of conserved genes (Garavaglia et al., 2012;Herniou et al., 2003) or complete genomes (GarciaMaruniak et al., 2004;Lauzon et al., 2006;Olive...
Background Pseudomonas aeruginosa is an opportunistic pathogen and one of the leading causes of nosocomial infections. Moreover, the species can cause severe infections in cystic fibrosis patients, in burnt victims and cause disease in domestic animals. The control of these infections is often difficult due to its vast repertoire of mechanisms for antibiotic resistance. Phage therapy investigation with P. aeruginosa bacteriophages has aimed mainly the control of human diseases. In the present work, we have isolated and characterized a new bacteriophage, named Pseudomonas phage BrSP1, and investigated its host range against 36 P. aeruginosa strains isolated from diseased animals and against P. aeruginosa ATCC strain 27853. Results We have isolated a Pseudomonas aeruginosa phage from sewage. We named this virus Pseudomonas phage BrSP1. Our electron microscopy analysis showed that phage BrSP1 had a long tail structure found in members of the order Caudovirales. “In vitro” biological assays demonstrated that phage BrSP1 was capable of maintaining the P. aeruginosa population at low levels for up to 12 h post-infection. However, bacterial growth resumed afterward and reached levels similar to non-treated samples at 24 h post-infection. Host range analysis showed that 51.4% of the bacterial strains investigated were susceptible to phage BrSP1 and efficiency of plating (EOP) investigation indicated that EOP values in the strains tested varied from 0.02 to 1.72. Analysis of the phage genome revealed that it was a double-stranded DNA virus with 66,189 bp, highly similar to the genomes of members of the genus Pbunavirus , a group of viruses also known as PB1-like viruses. Conclusion The results of our “in vitro” bioassays and of our host range analysis suggested that Pseudomonas phage BrSP1 could be included in a phage cocktail to treat veterinary infections. Our EOP investigation confirmed that EOP values differ considerably among different bacterial strains. Comparisons of complete genome sequences indicated that phage BrSP1 is a novel species of the genus Pbunavirus . The complete genome of phage BrSP1 provides additional data that may help the broader understanding of pbunaviruses genome evolution. Electronic supplementary material The online version of this article (10.1186/s12866-019-1481-z) contains supplementary material, which is available to authorized users.
BackgroundCassava (Manihot esculenta) is the basic source for dietary energy of 500 million people in the world. In Brazil, Erinnyis ello ello (Lepidoptera: Sphingidae) is a major pest of cassava crops and a bottleneck for its production. In the 1980s, a naturally occurring baculovirus was isolated from E. ello larva and successfully applied as a bio-pesticide in the field. Here, we described the structure, the complete genome sequence, and the phylogenetic relationships of the first sphingid-infecting betabaculovirus.ResultsThe baculovirus isolated from the cassava hornworm cadavers is a betabaculovirus designated Erinnyis ello granulovirus (ErelGV). The 102,759 bp long genome has a G + C content of 38.7%. We found 130 putative ORFs coding for polypeptides of at least 50 amino acid residues. Only eight genes were found to be unique. ErelGV is closely related to ChocGV and PiraGV isolates. We did not find typical homologous regions and cathepsin and chitinase homologous genes are lacked. The presence of he65 and p43 homologous genes suggests horizontal gene transfer from Alphabaculovirus. Moreover, we found a nucleotide metabolism-related gene and two genes that could be acquired probably from Densovirus.ConclusionsThe ErelGV represents a new virus species from the genus Betabaculovirus and is the closest relative of ChocGV. It contains a dUTPase-like, a he65-like, p43-like genes, which are also found in several other alpha- and betabaculovirus genomes, and two Densovirus-related genes. Importantly, recombination events between insect viruses from unrelated families and genera might drive baculovirus genomic evolution.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-856) contains supplementary material, which is available to authorized users.
The toxicology of mercury (Hg) is of concern since this metal is ubiquitously distributed in the environment, and living organisms are routinely exposed to Hg at low to high levels. The toxic effects of Hg are well studied and it is known that they may differ depending on the Hg chemical species. In this chapter, we emphasize the neurotoxic effects of Hg during brain development. The immature brain is more susceptible to Hg exposure, since all the Hg chemical forms, not only the organic ones, can harm it. The possible consequences of Hg exposure during the early stages of development, the additive effects with other co-occurring neurotoxicants, and the known mechanisms of action and targets will be addressed in this chapter.
The serpin family of serine proteinase inhibitors plays key roles in a variety of biochemical pathways. In insects, one of the important functions carried out by serpins is regulation of the phenoloxidase (PO) cascade -a pathway that produces melanin and other compounds that are important in insect humoral immunity. Recent sequencing of the baculovirus Hemileuca sp. nucleopolyhedrovirus (HespNPV) genome revealed the presence of a gene, hesp018, with homology to insect serpins. To our knowledge, hesp018 is the first viral serpin homologue to be characterized outside of the chordopoxviruses. The Hesp018 protein was found to be a functional serpin with inhibitory activity against a subset of serine proteinases. Hesp018 also inhibited PO activation when mixed with lepidopteran haemolymph. The Hesp018 protein was secreted when expressed in lepidopteran cells and a baculovirus expressing Hesp018 exhibited accelerated production of viral progeny during in vitro infection. Expression of Hesp018 also reduced caspase activity induced by baculovirus infection, but caused increased cathepsin activity. In infected insect larvae, expression of Hesp018 resulted in faster larval melanization, consistent with increased activity of viral cathepsin. Finally, expression of Hesp018 increased the virulence of a prototype baculovirus by fourfold in orally infected neonate Trichoplusia ni larvae. Based on our observations, we hypothesize that hesp018 may have been retained in HespNPV due to its ability to inhibit the activity of select host proteinases, possibly including proteinases involved in the PO response, during infection of host insects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.