Improving speech system performance in noisy environments remains a challenging task, and speech enhancement (SE) is one of the effective techniques to solve the problem. Motivated by the promising results of generative adversarial networks (GANs) in a variety of image processing tasks, we explore the potential of conditional GANs (cGANs) for SE, and in particular, we make use of the image processing framework proposed by Isola et al.[1] to learn a mapping from the spectrogram of noisy speech to an enhanced counterpart. The SE cGAN consists of two networks, trained in an adversarial manner: a generator that tries to enhance the input noisy spectrogram, and a discriminator that tries to distinguish between enhanced spectrograms provided by the generator and clean ones from the database using the noisy spectrogram as a condition. We evaluate the performance of the cGAN method in terms of perceptual evaluation of speech quality (PESQ), short-time objective intelligibility (STOI), and equal error rate (EER) of speaker verification (an example application). Experimental results show that the cGAN method overall outperforms the classical short-time spectral amplitude minimum mean square error (STSA-MMSE) SE algorithm, and is comparable to a deep neural network-based SE approach (DNN-SE).
Speech enhancement and speech separation are two related tasks, whose purpose is to extract either one or more target speech signals, respectively, from a mixture of sounds generated by several sources. Traditionally, these tasks have been tackled using signal processing and machine learning techniques applied to the available acoustic signals. More recently, visual information from the target speakers, such as lip movements and facial expressions, has been introduced to speech enhancement and speech separation systems, because the visual aspect of speech is essentially unaffected by the acoustic environment. In order to efficiently fuse acoustic and visual information, researchers have exploited the flexibility of data-driven approaches, specifically deep learning, achieving state-of-the-art performance. The ceaseless proposal of a large number of techniques to extract features and fuse multimodal information has highlighted the need for an overview that comprehensively describes and discusses audio-visual speech enhancement and separation based on deep learning. In this paper, we provide a systematic survey of this research topic, focusing on the main elements that characterise the systems in the literature: visual features; acoustic features; deep learning methods; fusion techniques; training targets and objective functions. We also survey commonly employed audio-visual speech datasets, given their central role in the development of data-driven approaches, and evaluation methods, because they are generally used to compare different systems and determine their performance. In addition, we review deeplearning-based methods for speech reconstruction from silent videos and audio-visual sound source separation for non-speech signals, since these methods can be more or less directly applied to audio-visual speech enhancement and separation.
Keywords:Lombard effect audio-visual speech enhancement deep learning speech quality speech intelligibility A B S T R A C T When speaking in presence of background noise, humans reflexively change their way of speaking in order to improve the intelligibility of their speech. This reflex is known as Lombard effect. Collecting speech in Lombard conditions is usually hard and costly. For this reason, speech enhancement systems are generally trained and evaluated on speech recorded in quiet to which noise is artificially added. Since these systems are often used in situations where Lombard speech occurs, in this work we perform an analysis of the impact that Lombard effect has on audio, visual and audio-visual speech enhancement, focusing on deep-learning-based systems, since they represent the current state of the art in the field.We conduct several experiments using an audio-visual Lombard speech corpus consisting of utterances spoken by 54 different talkers. The results show that training deep-learning-based models with Lombard speech is beneficial in terms of both estimated speech quality and estimated speech intelligibility at low signal to noise ratios, where the visual modality can play an important role in acoustically challenging situations. We also find that a performance difference between genders exists due to the distinct Lombard speech exhibited by males and females, and we analyse it in relation with acoustic and visual features. Furthermore, listening tests conducted with audio-visual stimuli show that the speech quality of the signals processed with systems trained using Lombard speech is statistically significantly better than the one obtained using systems trained with non-Lombard speech at a signal to noise ratio of −5 dB. Regarding speech intelligibility, we find a general tendency of the benefit in training the systems with Lombard speech.
Audio-visual speech enhancement (AV-SE) is the task of improving speech quality and intelligibility in a noisy environment using audio and visual information from a talker. Recently, deep learning techniques have been adopted to solve the AV-SE task in a supervised manner. In this context, the choice of the target, i.e. the quantity to be estimated, and the objective function, which quantifies the quality of this estimate, to be used for training is critical for the performance. This work is the first that presents an experimental study of a range of different targets and objective functions used to train a deeplearning-based AV-SE system. The results show that the approaches that directly estimate a mask perform the best overall in terms of estimated speech quality and intelligibility, although the model that directly estimates the log magnitude spectrum performs as good in terms of estimated speech quality.
Both acoustic and visual information influence human perception of speech. For this reason, the lack of audio in a video sequence determines an extremely low speech intelligibility for untrained lip readers. In this paper, we present a way to synthesise speech from the silent video of a talker using deep learning. The system learns a mapping function from raw video frames to acoustic features and reconstructs the speech with a vocoder synthesis algorithm. To improve speech reconstruction performance, our model is also trained to predict text information in a multi-task learning fashion and it is able to simultaneously reconstruct and recognise speech in real time. The results in terms of estimated speech quality and intelligibility show the effectiveness of our method, which exhibits an improvement over existing video-to-speech approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.