The electrical resistance of single VO(2) nanobeams was measured while simultaneously mapping the domain structure with Raman spectroscopy to investigate the relationship between structural domain formation and the metal-insulator transition. With increasing temperature, the nanobeams transformed from the insulating monoclinic M(1) phase to a mixture of the Mott-insulating M(2) and metallic rutile phases. Domain fractions were used to extract the temperature dependent resistivity of the M(2) phase, which showed an activated behavior consistent with the expected Mott-Hubbard gap. Metallic monoclinic phases were also produced by direct injection of charge into devices, decoupling the Mott metal-insulator transition from the monoclinic to rutile structural phase transition.
Coexisting monoclinic M(1) (insulating) and rutile (metallic) domains were observed in free-standing vanadium dioxide nanobeams at room temperature. Similar domain structures have been attributed to interfacial strain, which was not present here. Annealing under reducing conditions indicated that a deficiency of oxygen stabilizes the rutile phase to temperatures as low as 103 K, which represents an unprecedented suppression of the phase transition by 238 K. In a complementary manner, oxygen-rich growth conditions stabilize the metastable monoclinic M(2) and triclinic T (or M(3)) phases. A pseudophase diagram with dimensions of temperature and stoichiometry is established that highlights the accessibility of new phases in the nanobeam geometry.
We quantitatively examine the relative influence of bulk impurities and surface states on the electrical properties of Ge nanowires with and without phosphorus (P) doping. The unintentional impurity concentration in nominally undoped Ge nanowires is less than 2 x 10(17) cm(-3) as determined by atom probe tomography. Surprisingly, P doping of approximately 10(18) cm(-3) reduces the nanowire conductivity by 2 orders of magnitude. By modeling the contributions of dopants, impurities, and surface states, we confirm that the conductivity of nominally undoped Ge nanowires is mainly due to surface state induced hole accumulation rather than impurities introduced by catalyst. In P-doped nanowires, the surface states accept the electrons generated by the P dopants, reducing the conductivity and leading to ambipolar behavior. In contrast, intentional surface-doping results in a high conductivity and recovery of n-type characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.