There is a general assumption that amphiphilic compounds, such as fatty acids, readily form membranous vesicles when dispersed in aqueous phases. However, from earlier studies, it is known that vesicle stability depends strongly on pH, temperature, chain length, ionic concentration and the presence or absence of divalent cations. To test how robust simple amphiphilic compounds are in terms of their ability to assemble into stable vesicles, we chose to study 10- and 12-carbon monocarboxylic acids and a mixture of the latter with its monoglyceride. These were dispersed in hydrothermal water samples drawn directly from hot springs in Yellowstone National Park at two pH ranges, and the results were compared with sea water under the same conditions. We found that the pure acids could form membranous vesicles in hydrothermal pool water, but that a mixture of dodecanoic acid and glycerol monododecanoate was less temperature-sensitive and assembled into relatively stable membranes at both acidic and alkaline pH ranges. Furthermore, the vesicles were able to encapsulate nucleic acids and pyranine, a fluorescent anionic dye. None of the amphiphiles that were tested formed stable vesicles in sea water because the high ionic concentrations disrupted membrane stability.
Transmembrane proton gradients coupled to, and maintained by, electron transport are ubiquitous sources of chemiosmotic energy in all life today, but how this system first emerged is uncertain. Here we report a model liposome system in which internal ferricyanide serves as an oxidant and external ascorbate or dithionite provide a source of electrons to electron carriers embedded in liposome membranes. Quinones linked the donor to the acceptor in a coupled redox reaction that released protons into the vesicle internal volume as electrons were transported across the membranes, thereby producing substantial pH gradients. Using this system, we found that one or more quinones in extracts from carbonaceous meteorites could serve as coupling agents and that substantial pH gradients developed in the acidic interior of liposomes. If amphiphilic compounds present on the prebiotic Earth assembled into membranous compartments that separate reduced solutes in the external medium from an encapsulated acceptor, quinones can mediate electron and proton transport across the membranes, thereby providing a source of chemiosmotic energy for primitive metabolic reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.