Abstract-The Internet of Things (IoT) promises a plethora of new services and applications. To reach its potential IoT must break down the silos that limit applications' interoperability and hinder their manageability. Doing so leads to the building of Ultra-Large Scale Systems (ULSS) in several verticals, including Autonomous Vehicles, Smart Cities, and Smart Grids. The scope of ULSS is large in the number of things and complex in the variety of applications, volume of data, and diversity of communication patterns. To handle this scale and complexity we propose Hierarchical Emergent Behaviors (HEB), a paradigm that builds on the concepts of emergent behavior and hierarchical organization. Rather than explicitly programming all possible decisions in the vast space of ULSS scenarios, HEB relies on the emergent behaviors induced by local rules at each level of the hierarchy. In this paper we discuss the modifications to classical IoT architectures required by HEB, as well as the new challenges. We also illustrate the HEB concepts in reference to Autonomous Vehicles. This use case paves the way to the discussion of new lines of research.
Machine learning predictors have been increasingly applied in production settings, including in one of the world's largest hiring platforms, Hired, to provide a better candidate and recruiter experience. The ability to provide actionable feedback is desirable for candidates to improve their chances of achieving success in the marketplace. Until recently, however, methods aimed at providing actionable feedback have been limited in terms of realism and latency. In this work, we demonstrate how, by applying a newly introduced method based on Generative Adversarial Networks (GANs), we are able to overcome these limitations and provide actionable feedback in real-time to candidates in production settings. Our experimental results highlight the significant benefits of utilizing a GAN-based approach on our dataset relative to two other state-of-the-art approaches (including over 1000x latency gains). We also illustrate the potential impact of this approach in detail on two real candidate profile examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.