Neisseria gonorrhoeae is one of the most prevalent sexually transmitted diseases worldwide with more than 100 million new infections per year. A lack of intense research over the last decades and increasing resistances to the recommended antibiotics call for a better understanding of gonococcal infection, fast diagnostics and therapeutic measures against N. gonorrhoeae. Therefore, the aim of this work was to identify novel immunogenic proteins as a first step to advance those unresolved problems. For the identification of immunogenic proteins, pHORF oligopeptide phage display libraries of the entire N. gonorrhoeae genome were constructed. Several immunogenic oligopeptides were identified using polyclonal rabbit antibodies against N. gonorrhoeae. Corresponding full-length proteins of the identified oligopeptides were expressed and their immunogenic character was verified by ELISA. The immunogenic character of six proteins was identified for the first time. Additional 13 proteins were verified as immunogenic proteins in N. gonorrhoeae.
Neisseria gonorrhoeae is the causative organism of gonorrhoea, a sexually transmitted disease that globally accounts for an estimated 80 to 100 million new infections per year. Increasing resistances to all common antibiotics used for N. gonorrhoeae treatment pose the risk of an untreatable disease. Further knowledge of ways of infection and host immune response are needed to understand the pathogen-host interaction and to discover new treatment alternatives against this disease. Therefore, detailed information about immunogenic proteins and their properties like epitope sites could advance further research in this area. In this work, we investigated immunogenic proteins of N. gonorrhoeae for linear epitopes by microarrays. Dominant linear epitopes were identified for eleven of the nineteen investigated proteins with three polyclonal rabbit antibodies from different immunisations. Identified linear epitopes were further examined for non-specific binding with antibodies to Escherichia coli and the closely related pathogen Neisseria meningitidis. On top of that, amino acids crucial for the antibody epitope binding were detected by microarray based alanine scans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.