We report on an approach to rapidly screen thousands of Salmonella Enteritidis proteins with the goal of identifying novel immunodominant proteins. We used a microarray-based system that warrants high throughput and easy handling. Seven immunogenic candidates were selected after screening. Comparative analyses by ELISA and microarrays manifested their immunodominant character. The large repetitive protein (SEN4030) that plays a role as a putative adhesin in initial cell surface interaction and is highly specific to Salmonella is considered to be the most suitable protein for a diagnostic approach. The results further demonstrate that the strategy applied herein is convenient for specifically identifying immunogenic proteins of pathogenic microorganisms. Consequently, it enables a sound assessment of promising candidates for diagnostic applications and vaccine development. Moreover, the elucidation of immunogenic proteins may assist in unveiling unknown virulence-associated factors, thus furthering the understanding of the underlying pathogenicity of Salmonella in general, and of S. Enteritidis, one of the most frequently detected serovars of this pathogen, in particular.FigureThe microarray-based approach was aimed at identifying novel immunodominant proteins of S. Enteritidis. Seven antigens were revealed by screening a cDNA expression library. SEN4030, a large repetitive protein specific for salmonella, is considered an optimal candidate for future applications.
Neisseria gonorrhoeae is the causative organism of gonorrhoea, a sexually transmitted disease that globally accounts for an estimated 80 to 100 million new infections per year. Increasing resistances to all common antibiotics used for N. gonorrhoeae treatment pose the risk of an untreatable disease. Further knowledge of ways of infection and host immune response are needed to understand the pathogen-host interaction and to discover new treatment alternatives against this disease. Therefore, detailed information about immunogenic proteins and their properties like epitope sites could advance further research in this area. In this work, we investigated immunogenic proteins of N. gonorrhoeae for linear epitopes by microarrays. Dominant linear epitopes were identified for eleven of the nineteen investigated proteins with three polyclonal rabbit antibodies from different immunisations. Identified linear epitopes were further examined for non-specific binding with antibodies to Escherichia coli and the closely related pathogen Neisseria meningitidis. On top of that, amino acids crucial for the antibody epitope binding were detected by microarray based alanine scans.
The synthetic antimicrobial peptides (sAMPs) Pep19-2.5 and Pep19-4LF have been shown in vitro and in vivo to reduce the release of pro-inflammatory cytokines, leading to the suppression of inflammation and immunomodulation. We hypothesized that intervention with Pep19-2.5 and Pep19-4LF immediately after cardiac arrest and resuscitation (CA-CPR) might attenuate immediate systemic inflammation, survival, and long-term outcomes in a standardized mouse model of CA-CPR. Long-term outcomes up to 28 days were assessed between a control group (saline) and two peptide intervention groups. Primarily, survival as well as neurological and cognitive parameters were assessed. In addition, systemic inflammatory molecules and specific biomarkers were analyzed in plasma as well as in brain tissue. Treatment with sAMPs did not provide any short- or long-term benefits for either survival or neurological outcomes, and no significant benefit on inflammation in the CA-CPR animal model. While no difference was found in the plasma analysis of early cytokines between the intervention groups four hours after resuscitation, a significant increase in UCH-L1, a biomarker of neuronal damage and blood–brain barrier rupture, was measured in the Pep19-4LF-treated group. The theoretical benefit of both sAMPs tested here for the treatment of post-cardiac arrest syndrome could not be proven.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.