In this paper we present a navigation system for Micro Aerial Vehicles (MAV) based on information provided by a visual odometry algorithm processing data from an RGB-D camera. The visual odometry algorithm uses an uncertainty analysis of the depth information to align newly observed features against a global sparse model of previously detected 3D features. The visual odometry provides updates at roughly 30 Hz that is fused at 1 KHz with the inertial sensor data through a Kalman Filter. The high-rate pose estimation is used as feedback for the controller, enabling autonomous flight. We developed a 4DOF path planner and implemented a real-time 3D SLAM where all the system runs on-board. The experimental results and live video demonstrates the autonomous flight and 3D SLAM capabilities of the quadrotor with our system.
This work presents a revision of four different registration methods for thermal infrared and visible images captured by a camera-based prototype for the remote monitoring of diabetic foot. This prototype uses low cost and off-the-shelf available sensors in thermal infrared and visible spectra. Four different methods (Geometric Optical Translation, Homography, Iterative Closest Point, and Affine transform with Gradient Descent) have been implemented and analyzed for the registration of images obtained from both sensors. All four algorithms’ performances were evaluated using the Simultaneous Truth and Performance Level Estimation (STAPLE) together with several overlap benchmarks as the Dice coefficient and the Jaccard index. The performance of the four methods has been analyzed with the subject at a fixed focal plane and also in the vicinity of this plane. The four registration algorithms provide suitable results both at the focal plane as well as outside of it within 50 mm margin. The obtained Dice coefficients are greater than 0.950 in all scenarios, well within the margins required for the application at hand. A discussion of the obtained results under different distances is presented along with an evaluation of its robustness under changing conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.