A new phosphorescent material of cyclometalated alkynylgold(III) complex, [Au(2,5-F(2)C(6)H(3)-C∧N∧C)(C≡C-C(6)H(4)N(C(6)H(5))(2)-p)] (1) (2,5-F(2)C(6)H(3)-HC∧N∧CH = 2,6-diphenyl-4-(2,5-difluorophenyl)pyridine), has been synthesized, characterized, and its device performance investigated. This luminescent gold(III) complex was found to exhibit rich PL and EL properties and has been utilized as phosphorescent dopants of OLEDs. At an optimized dopant concentration of 4%, a device with a maximum external quantum efficiency (EQE) of 11.5%, corresponding to a current efficiency of 37.4 cd/A and a power efficiency of 26.2 lm/W, has been obtained. Such a high EQE is comparable to that of Ir(ppy)(3)-based devices. The present work suggests that the alkynylgold(III) complex is a promising phosphorescent material in terms of both efficiency and thermal stability, with the additional advantages of its relatively inexpensive cost and low toxicity.
A series of triarylamine-containing tricarbonyl rhenium(I) complexes, [BrRe(CO)3 (N^N)] (N^N=5,5'-bis(N,N-diaryl-4-[ethen-1-yl]-aniline)-2,2'-bipyridine), has been designed and synthesized by introducing a rhenium(I) metal center into a donor-π-acceptor-π-donor structure. All of the complexes showed an intense broad structureless emission band in dichloromethane at around 680-708 nm, which originated from an excited state of intraligand charge transfer ((3)ILCT) character from the triarylamine to the bipyridine moiety. Upon introduction of the bulky and electron-donating pentaphenylbenzene units attached to the aniline groups, the emission bands were found to be red shifted. The nanosecond transient absorption spectra of two selected complexes were studied, which were suggestive of the formation of an initial charge-separated state. Computational studies have been performed to provide further insight into the origin of the absorption and emission. One of the rhenium(I) complexes has been utilized in the fabrication of organic light-emitting diodes (OLEDs), representing the first example of the realization of deep red to near-infrared rhenium(I)-based OLEDs with an emission extending up to 800 nm.
Organic light-emitting diodes (OLEDs) under constant current operation suffer from a decrease of luminance accompanied by an increase of driving voltage. We report a way to greatly improve the stability of OLEDs having a green emitter exhibiting thermally activated delayed fluorescence (TADF), (4s,6s)-2,4,5,6-tetra(9H-carbazol-9-yl) isophthalonitrile (4CzIPN), by introducing ultrathin (1 to 3 nm) interlayers of 8-hydroxyquinolinato lithium (Liq) between hole-blocking layer and its surrounding emissive and electron-transport layers. Under constant current operation starting at a luminescence of 1,000 cd/m2, the time to reach 90% of initial luminance (LT90) increased eight times, resulting in LT90 = 1,380 hours after insertion of the interlayers. Combining this new concept and mixed host system, LT95 was further extended to 1315 hours that is 16 times of reference device. This is the best value reported for TADF-based OLEDs and is comparable to the operational lifetimes of well-established phosphorescence-based OLEDs. Thermally stimulated current measurements showed that the number of deep charge traps was reduced with the insertion of the ultrathin Liq interlayer, indicating that reducing the number of deep traps is important for improving the operational lifetime and that exciton-polaron annihilation may be a source of the device degradation.
A new class of bipolar alkynylgold(III) complexes containing triphenylamine and benzimidazole moieties has been synthesized, characterized, and applied as phosphorescent dopants in the fabrication of solution-processable organic light-emitting devices (OLEDs). The incorporation of methyl groups in the central phenyl unit has been found to rigidify the molecule to reduce nonradiative decay, yielding a high photoluminescence quantum yield of up to 75% in spin-coated thin films. In addition, the realization of highly efficient solution-processable OLEDs with an extremely small external quantum efficiency (EQE) roll-off has been demonstrated. At practical brightness level of 1000 cd m(-2), the optimized devices exhibited a high EQE of up to 10.0% and an extremely small roll-off of less than 1%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.