Intestinal fungi are an important component of the microbiota, and recent studies have unveiled their potential in modulating host immune homeostasis and inflammatory disease. Nonetheless, the mechanisms governing immunity to gut mycobiota remain unknown. We identified CX3CR1+ mononuclear phagocytes (MNPs) as essential for the initiation of innate and adaptive immune responses to intestinal fungi. CX3CR1+ MNPs express antifungal receptors and activate antifungal responses in a Syk dependent manner. Genetic ablation of CX3CR1+ MNPs led to changes in the gut fungal communities and to severe colitis that was rescued by antifungal treatment. A missense mutation in the gene encoding CX3CR1 led to impaired antifungal responses in Crohn’s Disease patients. These results unravel the role of CX3CR1+ MNPs as mediators of the interactions between intestinal mycobiota and host immunity during health and disease.
The opportunistic pathogen Candida albicans is a frequent inhabitant of the human gastrointestinal tract where it usually behaves as a harmless commensal. In this particular niche, it needs to adapt to the different micro environments that challenge its survival within the host. In order to determine those factors involved in gut adaptation, we have used a gastrointestinal model of colonization in mouse to trace the behaviour of fungal cells. We have developed a genetic labelling system based on the complementary spectral properties of the fluorescent proteins GFP and a new C. albicans codon-adapted RFP (dTOM2) that allow a precise quantification of the fungal population in the gut via standard in vitro cultures or flow cytometry. This methodology has allowed us to determine the role of the three MAP kinase pathways of C. albicans (mediated by the MAPK Mkc1, Cek1 or Hog1) in mouse gut colonization via competitive assays with MAPK pathway mutants and their isogenic wild type strain. This approach reveals the signalling through HOG pathway as a critical factor influencing the establishment of C. albicans in the mouse gut. Less pronounced effects for mkc1 or cek1 mutants were found, only evident after 2–3 weeks of colonization. We have also seen that hog1 mutants is defective in adhesion to the gut mucosa and sensitive to bile salts. Finally, we have developed a genetic strategy for the in vivo excision (tetracycline-dependent) of any specific gene during the course of colonization in this particular niche, allowing the analysis of its role during gut colonization.
SummaryFungal infections are a serious health problem. In recent years, basic research is focusing on the identification of fungal virulence factors as promising targets for the development of novel antifungals. The wall, as the most external cellular component, plays a crucial role in the interaction with host cells mediating processes such as adhesion or phagocytosis that are essential during infection. Specific components of the cell wall (called PAMPs) interact with specific receptors in the immune cell (called PRRs), triggering responses whose molecular mechanisms are being elucidated. We review here the main structural carbohydrate components of the fungal wall (glucan, mannan and chitin), how their biogenesis takes place in fungi and the specific receptors that they interact with. Different model fungal pathogens are chosen to illustrate the functional consequences of this interaction. Finally, the identification of the key components will have important consequences in the future and will allow better approaches to treat fungal infections.
CRISPR technology is a new and efficient way to edit genomes, but it is also an appealing way to regulate gene expression. We have implemented CRISPR as a gene expression platform in Candida albicans using fusions between a Cas9 inactive enzyme and specific repressors or activators and demonstrated its functionality. This will allow future manipulation of complex virulence pathways in this important fungal pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.