The synthetic-method determination of liquid-liquid coexistence curves using semiautomated light scattering instrumentation and stirred samples is based on identifying the coexistence curve transition temperatures (T(cx)) from sudden changes in turbidity associated with droplet formation. Here we use a thorough set of such measurements to evaluate the accuracy of several different analysis methods reported in the literature for assigning T(cx). More than 20 samples each of weakly opalescent isobutyric acid+water and strongly opalescent aniline+hexane were tested with our instrumentation. Transmitted light and scattering intensities at 2 degrees , 24 degrees , and 90 degrees were collected simultaneously as a function of temperature for each stirred sample, and the data were compared with visual observations and light scattering theory. We find that assigning T(cx) to the onset of decreased transmitted light or increased 2 degrees scattering has a potential accuracy of 0.01 K or better for many samples. However, the turbidity due to critical opalescence obscures the identification of T(cx) from the light scattering data of near-critical stirred samples, and no simple rule of interpretation can be applied regardless of collection geometry. At best, when 90 degrees scattering is collected along with transmitted or 2 degrees data, the accuracy of T(cx) is limited to 0.05 K for near-critical samples. Visual determination of T(cx) remains the more accurate approach in this case.
One strategy for increasing the efficiency of organic electrooptic devices based on chromophore-polymer composite materials is to improve chromophore ordering. In these materials, ordering is induced through the interaction of the chromophore dipole moment with an external electric field, applied at temperatures near the Tg of the polymer host, a process referred to as "poling". To provide insight into the molecular details of the poling process under conditions representative of device construction, the rotational dynamics of single 4-dicyano-methylene-2-methyl-6-(p-(dimethylamino)styryl)-4H-pyran (DCM) molecules in poly(methyl acrylate) at T = Tg + 11 degrees C in the presence and absence of an electric field are investigated using single-molecule confocal fluorescence microscopy. Single-molecule rotational dynamics are monitored through the time evolution of the fluorescence anisotropy. The anisotropy correlation function demonstrates nonexponential decay, with beta values derived from fits using the Kohlrausch-Williams-Watts law ranging from 0.7 to 1 with beta(KWW) = 0.83. This observation is consistent with previous studies of molecular rotation dynamics in polymer melts and reflects the dynamical heterogeneity provided by the polymer host. The rotational dynamics of DCM are weakly perturbed in the presence of a 50 V/microm electric field, typical of the field strength employed in device construction. The expected perturbation of the rotational dynamics is determined and found to be consistent with the alignment potential created by the electric field relative to the amount of thermal energy available. The relevance of these findings with respect to current models of the poling process is discussed. This work demonstrates the utility of polarization-sensitive single-molecule microscopy in elucidating the details of molecular reorientation during poling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.