The complex series of movements that mediates chromosome segregation during mitosis is dependent on the attachment of microtubules to kinetochores, DNA-protein complexes that assemble on centromeric DNA. We describe the use of live-cell imaging and chromatin immunoprecipitation in S. cerevisiae to identify ten kinetochore subunits, among which are yeast homologs of microtubule binding proteins in animal cells. By analyzing conditional mutations in several of these proteins, we show that they are required for the imposition of tension on paired sister kinetochores and for correct chromosome movement. The proteins include both molecular motors and microtubule associated proteins (MAPs), implying that motors and MAPs function together in binding chromosomes to spindle microtubules.
As cells enter mitosis, centrosomes dramatically increase in size and ability to nucleate microtubules. This process, termed centrosome maturation, is driven by the accumulation and activation of gamma-tubulin and other proteins that form the pericentriolar material on centrosomes during G2/prophase. Here, we show that the human centrosomal protein, Cep192 (centrosomal protein of 192 kDa), is an essential component of the maturation machinery. Specifically, we have found that siRNA depletion of Cep192 results in a complete loss of functional centrosomes in mitotic but not interphase cells. In mitotic cells lacking Cep192, microtubules become organized around chromosomes but rarely acquire stable bipolar configurations. These cells contain normal numbers of centrioles but cannot assemble gamma-tubulin, pericentrin, or other pericentriolar proteins into an organized PCM. Alternatively, overexpression of Cep192 results in the formation of multiple, extracentriolar foci of gamma-tubulin and pericentrin. Together, our findings support the hypothesis that Cep192 stimulates the formation of the scaffolding upon which gamma-tubulin ring complexes and other proteins involved in microtubule nucleation and spindle assembly become functional during mitosis.
SummaryIn this paper, we describe an algorithmic framework for the automatic detection of diffraction-limited fluorescent spots in 3D optical images at a separation below the Rayleigh limit, i.e. with super-resolution. We demonstrate the potential of super-resolution detection by tracking fluorescently tagged chromosomes during mitosis in budding yeast. Our biological objective is to identify and analyse the proteins responsible for the generation of tensile force during chromosome segregation. Dynamic measurements in living cells are made possible by green fluroescent protein (GFP)-tagging chromosomes and spindle pole bodies to generate cells carrying four fluorescent spots, and observe the motion of the spots over time using 3D-fluorescence microscopy. The central problem in spot detection arises with the partial or complete overlap of spots when tagged objects are separated by distances below the resolution of the optics. To detect multiple spots under these conditions, a set of candidate mixture models is built, and the best candidate is selected from the set based on χ 2 -statistics of the residuals in least-square fits of the models to the image data.Even with images having a signal-to-noise ratio (SNR) as low as 5-10, we are able to increase the resolution two-fold below the Rayleigh limit. In images with a SNR of 5-10, the accuracy with which isolated tags can be localized is less than 5 nm. For two tags separated by less than the Rayleigh limit, the localization accuracy is found to be between 10 and 20 nm, depending on the effective point-to-point distance. This indicates the intimate relationship between resolution and localization accuracy.
Glioblastoma multiforme (GBM) is a highly aggressive form of brain cancer associated with a very poor prognosis. Recently, the initiation and growth of GBM has been linked to brain tumor-initiating cells (BTICs), which are poorly differentiated and share features with neural stem cells (NSCs). Here we describe a kinome-wide RNA interference screen to identify factors that control the tumorigenicity of BTICs. We identified several genes whose silencing induces differentiation of BTICs derived from multiple GBM patients. In particular, knockdown of the adaptor protein TRRAP significantly increased differentiation of cultured BTICs, sensitized the cells to apoptotic stimuli, and negatively affected cell cycle progression. TRRAP knockdown also significantly suppressed tumor formation upon intracranial BTIC implantation into mice. Together, these findings support a critical role for TRRAP in maintaining a tumorigenic, stem cell-like state.
We have probed single kinetochore microtubule (k-MT) dynamics in budding yeast in the G1 phase of the cell cycle by automated tracking of a green fluorescent protein tag placed proximal to the centromere on chromosome IV and of a green fluorescent protein tag fused to the spindle pole body protein Spc42p. Our method reliably distinguishes between different dynamics in wild-type and mutant strains and under different experimental conditions. Using our methods we established that in budding yeast, unlike in metazoans, chromosomes make dynamic attachments to microtubules in G1. This makes it possible to interpret measurements of centromere tag dynamics as reflecting k-MT dynamics. We have examined the sensitivity of our assay by studying the effect of temperature, exposure to benomyl, and a tubulin mutation on k-MT dynamics. We have found that lowering the temperature and exposing cells to benomyl attenuate k-MT dynamics in a similar manner. We further observe that, in contrast to previous reports, the mutant tub2-150 forms k-MTs that depolymerize faster than wild type. Based on these findings, we propose high-resolution light microscopy of centromere dynamics in G1 yeast cells as a sensitive assay for the regulation of single k-MT dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.