The cause of Huntington's disease is expansion of polyglutamine (polyQ) domain in huntingtin, which makes this protein both neurotoxic and aggregation prone. Here we developed the first yeast model, which establishes a direct link between aggregation of expanded polyQ domain and its cytotoxicity. Our data indicated that deficiencies in molecular chaperones Sis1 and Hsp104 inhibited seeding of polyQ aggregates, whereas ssa1, ssa2, and ydj1–151 mutations inhibited expansion of aggregates. The latter three mutants strongly suppressed the polyQ toxicity. Spontaneous mutants with suppressed aggregation appeared with high frequency, and in all of them the toxicity was relieved. Aggregation defects in these mutants and in sis1–85 were not complemented in the cross to the hsp104 mutant, demonstrating an unusual type of inheritance. Since Hsp104 is required for prion maintenance in yeast, this suggested a role for prions in polyQ aggregation and toxicity. We screened a set of deletions of nonessential genes coding for known prions and related proteins and found that deletion of the RNQ1 gene specifically suppressed aggregation and toxicity of polyQ. Curing of the prion form of Rnq1 from wild-type cells dramatically suppressed both aggregation and toxicity of polyQ. We concluded that aggregation of polyQ is critical for its toxicity and that Rnq1 in its prion conformation plays an essential role in polyQ aggregation leading to the toxicity.
Recent developments in next-generation sequencing have enabled whole-genome profiling of nucleosome organizations. Although several algorithms for inferring nucleosome position from a single experimental condition have been available, it remains a challenge to accurately define dynamic nucleosomes associated with environmental changes. Here, we report a comprehensive bioinformatics pipeline, DANPOS, explicitly designed for dynamic nucleosome analysis at single-nucleotide resolution. Using both simulated and real nucleosome data, we demonstrated that bias correction in preliminary data processing and optimal statistical testing significantly enhances the functional interpretation of dynamic nucleosomes. The single-nucleotide resolution analysis of DANPOS allows us to detect all three categories of nucleosome dynamics, such as position shift, fuzziness change, and occupancy change, using a uniform statistical framework. Pathway analysis indicates that each category is involved in distinct biological functions. We also analyzed the influence of sequencing depth and suggest that even 200-fold coverage is probably not enough to identify all the dynamic nucleosomes. Finally, based on nucleosome data from the human hematopoietic stem cells (HSCs) and mouse embryonic stem cells (ESCs), we demonstrated that DANPOS is also robust in defining functional dynamic nucleosomes, not only in promoters, but also in distal regulatory regions in the mammalian genome.
The complex series of movements that mediates chromosome segregation during mitosis is dependent on the attachment of microtubules to kinetochores, DNA-protein complexes that assemble on centromeric DNA. We describe the use of live-cell imaging and chromatin immunoprecipitation in S. cerevisiae to identify ten kinetochore subunits, among which are yeast homologs of microtubule binding proteins in animal cells. By analyzing conditional mutations in several of these proteins, we show that they are required for the imposition of tension on paired sister kinetochores and for correct chromosome movement. The proteins include both molecular motors and microtubule associated proteins (MAPs), implying that motors and MAPs function together in binding chromosomes to spindle microtubules.
SummaryThe mechanisms ensuring specific incorporation of CENP-A at centromeres are poorly understood. Mis16 and Mis18 are required for CENP-A localization at centromeres and form a complex that is conserved from fission yeast to human. Fission yeast sim1 mutants that alleviate kinetochore domain silencing are defective in Scm3Sp, the ortholog of budding yeast Scm3Sc. Scm3Sp depends on Mis16/18 for its centromere localization and like them is recruited to centromeres in late anaphase. Importantly, Scm3Sp coaffinity purifies with CENP-ACnp1 and associates with CENP-ACnp1 in vitro, yet localizes independently of intact CENP-ACnp1 chromatin and is differentially released from chromatin. While Scm3Sc has been proposed to form a unique hexameric nucleosome with CENP-ACse4 and histone H4 at budding yeast point centromeres, we favor a model in which Scm3Sp acts as a CENP-ACnp1 receptor/assembly factor, cooperating with Mis16 and Mis18 to receive CENP-ACnp1 from the Sim3 escort and mediate assembly of CENP-ACnp1 into subkinetochore chromatin.
The accurate segregation of chromosomes at mitosis requires that all pairs of chromatids bind correctly to microtubules prior to the dissolution of sister cohesion and the initiation of anaphase. By analyzing the motion of GFP-tagged S. cerevisiae chromosomes, we show that kinetochore-microtubule attachments impose sufficient tension on sisters during prometaphase to transiently separate centromeric chromatin toward opposite sides of the spindle. Transient separations of 2-10 min duration occur in the absence of cohesin proteolysis, are characterized by independent motion of the sisters along the spindle, and are followed by the apparent reestablishment of sister linkages. The existence of transient sister separation in yeast explains the unusual bilobed localization of kinetochore proteins and supports an alternative model for spindle structure. By analogy with animal cells, we propose that yeast centromeric chromatin acts as a tensiometer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.