Cellular stress can trigger a process of self-destruction known as apoptosis. Cells can also respond to stress by adaptive changes that increase their ability to tolerate normally lethal conditions. Expression of the major heat-inducible protein hsp70 protects cells from heat-induced apoptosis. hsp70 has been reported to act in some situations upstream or downstream of caspase activation, and its protective effects have been said to be either dependent on or independent of its ability to inhibit JNK activation. Purified hsp70 has been shown to block procaspase processing in vitro but is unable to inhibit the activity of active caspase 3. Since some aspects of hsp70 function can occur in the absence of its chaperone activity, we examined whether hsp70 lacking its ATPase domain or the C-terminal EEVD sequence that is essential for peptide binding was required for the prevention of apoptosis. We generated stable cell lines with tetracycline-regulated expression of hsp70, hsc70, and chaperone-defective hsp70 mutants lacking the ATPase domain or the C-terminal EEVD sequence or containing AAAA in place of EEVD. Overexpression of hsp70 or hsc70 protected cells from heat shock-induced cell death by preventing the processing of procaspases 9 and 3. This required the chaperone function of hsp70 since hsp70 mutant proteins did not prevent procaspase processing or provide protection from apoptosis. JNK activation was inhibited by both hsp70 and hsc70 and by each of the hsp70 domain mutant proteins. The chaperoning activity of hsp70 is therefore not required for inhibition of JNK activation, and JNK inhibition was not sufficient for the prevention of apoptosis. Release of cytochrome c from mitochondria was inhibited in cells expressing full-length hsp70 but not in cells expressing the protein with ATPase deleted. Together with the recently identified ability of hsp70 to inhibit cytochrome c-mediated procaspase 9 processing in vitro, these data demonstrate that hsp70 can affect the apoptotic pathway at the levels of both cytochrome c release and initiator caspase activation and that the chaperone function of hsp70 is required for these effects.Protein-damaging stresses, such as exposure of cells to elevated temperatures, activate an adaptive response leading to the increased synthesis of a group of proteins that regulate protein-folding processes (reviewed in reference 43). Members of the hsp70 family of molecular chaperones recognize nonnative domains that are exposed during protein translation, membrane translocation, oligomerization, and ultimately degradation. The abundant cytoplasmic and nuclear protein hsc70 is assisted in this task by the highly inducible hsp70 protein, whose synthesis is controlled by the level of nonnative protein substrates. Conditions that alter protein structure can result in the exposure of hydrophobic regions that are normally buried within the molecule, leading to their aggregation and loss of function. The ability of hsp70 to compete for binding to these hydrophobic regions coupled with an ATP...
The cause of Huntington's disease is expansion of polyglutamine (polyQ) domain in huntingtin, which makes this protein both neurotoxic and aggregation prone. Here we developed the first yeast model, which establishes a direct link between aggregation of expanded polyQ domain and its cytotoxicity. Our data indicated that deficiencies in molecular chaperones Sis1 and Hsp104 inhibited seeding of polyQ aggregates, whereas ssa1, ssa2, and ydj1–151 mutations inhibited expansion of aggregates. The latter three mutants strongly suppressed the polyQ toxicity. Spontaneous mutants with suppressed aggregation appeared with high frequency, and in all of them the toxicity was relieved. Aggregation defects in these mutants and in sis1–85 were not complemented in the cross to the hsp104 mutant, demonstrating an unusual type of inheritance. Since Hsp104 is required for prion maintenance in yeast, this suggested a role for prions in polyQ aggregation and toxicity. We screened a set of deletions of nonessential genes coding for known prions and related proteins and found that deletion of the RNQ1 gene specifically suppressed aggregation and toxicity of polyQ. Curing of the prion form of Rnq1 from wild-type cells dramatically suppressed both aggregation and toxicity of polyQ. We concluded that aggregation of polyQ is critical for its toxicity and that Rnq1 in its prion conformation plays an essential role in polyQ aggregation leading to the toxicity.
Inhibition of the major cytosolic protease, proteasome, has been reported to induce programmed cell death in several cell lines, while with other lines, similar inhibition blocked apoptosis triggered by a variety of harmful treatments. To elucidate the mechanism of proand antiapoptotic action of proteasome inhibitors, their effects on U937 lymphoid and 293 kidney human tumor cells were tested. Treatment with peptidyl aldehyde MG132 and other proteasome inhibitors led to a steady increase in activity of c-Jun N-terminal kinase, JNK1, which is known to initiate the apoptotic program in response to certain stresses. Dose dependence of MG132-induced JNK activation was parallel with that of apoptosis. Furthermore, inhibition of the JNK signaling pathway strongly suppressed MG132-induced apoptosis. These data indicate that JNK is critical for the cell death caused by proteasome inhibitors. An antiapoptotic action of proteasome inhibitors could be revealed by a short incubation of cells with MG132 followed by its withdrawal. Under these conditions, the major heat shock protein Hsp72 accumulated in cells and caused suppression of JNK activation in response to certain stresses. Accordingly, pretreatment with MG132 reduced JNK-dependent apoptosis caused by heat shock or ethanol, but it was unable to block JNK-independent apoptosis induced by TNF␣. Therefore, proteasome inhibitors activate JNK, which initiates an apoptotic program, and simultaneously they induce Hsp72, which suppresses JNK-dependent apoptosis. A balance between these two effects might define the fate of cells exposed to the inhibitors.
In mammalian cells, abnormal proteins that escape proteasome-dependent degradation form small aggregates that can be transported into a centrosome-associated structure, called an aggresome. Here we demonstrate that in yeast a single aggregate formed by the huntingtin exon 1 with an expanded polyglutamine domain (103QP) represents a bona fide aggresome that colocalizes with the spindle pole body (the yeast centrosome) in a microtubule-dependent fashion. Since a polypeptide lacking the proline-rich region (P-region) of huntingtin (103Q) cannot form aggresomes, this domain serves as an aggresome-targeting signal. Coexpression of 103Q with 25QP, a soluble polypeptide that also carries the P-region, led to the recruitment of 103Q to the aggresome via formation of hetero-oligomers, indicating the aggresome targeting in trans. To identify additional factors involved in aggresome formation and targeting, we purified 103QP aggresomes and 103Q aggregates and identified the associated proteins using mass spectrometry. Among the aggresome-associated proteins we identified, Cdc48 (VCP/p97) and its cofactors, Ufd1 and Nlp4, were shown genetically to be essential for aggresome formation. The 14-3-3 protein, Bmh1, was also found to be critical for aggresome targeting. Its interaction with the huntingtin fragment and its role in aggresome formation required the huntingtin N-terminal N17 domain, adjacent to the polyQ domain. Accordingly, the huntingtin N17 domain, along with the P-region, plays a role in aggresome targeting. We also present direct genetic evidence for the protective role of aggresomes by demonstrating genetically that aggresome targeting of polyglutamine polypeptides relieves their toxicity.
Polyglutamine (polyQ) disorders, including Huntington's disease (HD), are caused by expansion of polyQ-encoding repeats within otherwise unrelated gene products. In polyQ diseases, the pathology and death of affected neurons are associated with the accumulation of mutant proteins in insoluble aggregates. Several studies implicate polyQ-dependent aggregation as a cause of neurodegeneration in HD, suggesting that inhibition of neuronal polyQ aggregation may be therapeutic in HD patients. We have used a yeast-based high-throughput screening assay to identify small-molecule inhibitors of polyQ aggregation. We validated the effects of four hit compounds in mammalian cell-based models of HD, optimized compound structures for potency, and then tested them in vitro in cultured brain slices from HD transgenic mice. These efforts identified a potent compound (IC 50 ؍ 10 nM) with long-term inhibitory effects on polyQ aggregation in HD neurons. Testing of this compound in a Drosophila HD model showed that it suppresses neurodegeneration in vivo, strongly suggesting an essential role for polyQ aggregation in HD pathology. The aggregation inhibitors identified in this screen represent four primary chemical scaffolds and are strong lead compounds for the development of therapeutics for human polyQ diseases.high-throughput screen ͉ small-molecule therapeutics ͉ Drosophila ͉ R6͞2 brain slices ͉ genetic disease A t least nine inherited neurodegenerative diseases, including Huntington's disease (HD), are caused by expansion of polyglutamine (polyQ)-encoding repeats within otherwise unrelated proteins (1, 2). In HD, expansion of polyQ repeats within the huntingtin (Htt) protein causes an adult-onset neurodegenerative disease characterized by movement disorder, psychiatric symptoms, and cognitive dysfunction (3-5). As in several major neurological disorders, including Alzheimer's and Parkinson's diseases, the pathology and death of affected neurons in polyQ diseases are associated with accumulation of mutant polypeptides in insoluble aggregates (6-9). These polyQ-containing aggregates, or inclusions, have been found in the nuclei of affected neurons in postmortem patient tissues and brains from HD transgenic mice (10-12) and have emerged as a hallmark of HD pathology.Mutant polypeptides with extended polyQ tracts aggregate in vitro and in vivo in a polyQ length-dependent manner, which closely correlates with the age of onset in HD and other polyQ-expansion diseases (2,(13)(14)(15). Although the precise role of neuronal aggregates in disease pathogenesis is not clear, therapeutic strategies aimed at inhibiting polyQ aggregation have shown some efficacy in vivo in both Drosophila and mouse models of HD (16,17). These and other studies (18, 19) implicate polyQ-dependent aggregation as a cause of neurodegeneration in HD and suggest that inhibition of neuronal polyQ aggregation may be therapeutic in HD patients (8).Chemical compounds that directly target polyQ aggregation have been identified in high-throughput screens using cell-free ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.