SummaryThe Numeniini is a tribe of 13 wader species (Scolopacidae, Charadriiformes) of which seven are Near Threatened or globally threatened, including two Critically Endangered. To help inform conservation management and policy responses, we present the results of an expert assessment of the threats that members of this taxonomic group face across migratory flyways. Most threats are increasing in intensity, particularly in non-breeding areas, where habitat loss resulting from residential and commercial development, aquaculture, mining, transport, disturbance, problematic invasive species, pollution and climate change were regarded as having the greatest detrimental impact. Fewer threats (mining, disturbance, problematic native species and climate change) were identified as widely affecting breeding areas. Numeniini populations face the greatest number of non-breeding threats in the East Asian-Australasian Flyway, especially those associated with coastal reclamation; related threats were also identified across the Central and Atlantic Americas, and East Atlantic flyways. Threats on the breeding grounds were greatest in Central and Atlantic Americas, East Atlantic and West Asian flyways. Three priority actions were associated with monitoring and research: to monitor breeding population trends (which for species breeding in remote areas may best be achieved through surveys at key non-breeding sites), to deploy tracking technologies to identify migratory connectivity, and to monitor land-cover change across breeding and non-breeding areas. Two priority actions were focused on conservation and policy responses: to identify and effectively protect key non-breeding sites across all flyways (particularly in the East Asian-Australasian Flyway), and to implement successful conservation interventions at a sufficient scale across human-dominated landscapes for species' recovery to be achieved. If implemented urgently, these measures in combination have the potential to alter the current population declines of many Numeniini species and provide a template for the conservation of other groups of threatened species.
We examined bird and plant communities among forest stands with different levels of spruce mortality following a large outbreak of spruce beetles (Dendroctonus rufipennis (Kirby)) in the Copper River Basin, Alaska. Spruce beetles avoided stands with black spruce (Picea mariana) and selectively killed larger diameter white spruce (Picea glauca), thereby altering forest structure and increasing the dominance of black spruce in the region. Alders (Alnus sp.) and crowberry (Empetrum nigrum) were more abundant in areas with heavy spruce mortality, possibly a response to the death of overstory spruce. Grasses and herbaceous plants did not proliferate as has been recorded following outbreaks in more coastal Alaskan forests. Two species closely tied to coniferous habitats, the tree-nesting Ruby-crowned Kinglet (Regulus calendula) and the red squirrel (Tamiasciurus hudsonicus), a major nest predator, were less abundant in forest stands with high spruce mortality than in low-mortality stands. Understory-nesting birds as a group were more abundant in forest stands with high levels of spruce mortality, although the response of individual bird species to tree mortality was variable. Birds breeding in stands with high spruce mortality likely benefited reproductively from lower squirrel densities and a greater abundance of shrubs to conceal nests from predators.
Shorebirds are conspicuous and abundant at high northern latitudes during spring and summer, but as seasonal conditions deteriorate, few remain during winter. To the best of our knowledge, Cook Inlet, Alaska (60.6˚ N, 151.6˚ W), is the world's coldest site that regularly supports wintering populations of shorebirds, and it is also the most northerly nonbreeding location for shorebirds in the Pacific Basin. During the winters of 1997 -2012, we conducted aerial surveys of upper Cook Inlet to document the spatial and temporal distribution and number of Rock Sandpipers (Calidris ptilocnemis) using the inlet. The average survey total was 8191 ± 6143 SD birds, and the average of each winter season's highest single-day count was 13 603 ± 4948 SD birds. We detected only Rock Sandpipers during our surveys, essentially all of which were individuals of the nominate subspecies (C. p. ptilocnemis). Survey totals in some winters closely matched the population estimate for this subspecies, demonstrating the region's importance as a nonbreeding resource to the subspecies. Birds were most often found at only a handful of sites in upper Cook Inlet, but shifted their distribution to more southerly locations in the inlet during periods of extreme cold. Two environmental factors allow Rock Sandpipers to inhabit Cook Inlet during winter: 1) an abundant bivalve (Macoma balthica) food source and 2) current and tidal dynamics that keep foraging substrates accessible during all but extreme periods of cold and ice accretion. C. p. ptilocnemis is a subspecies of high conservation concern for which annual winter surveys may serve as a relatively inexpensive population-monitoring tool that will also provide insight into adaptations that allow these birds to exploit high-latitude environments in winter.
Kubelka et al. (Reports, 9 November 2018, p. 680) claim that climate change has disrupted patterns of nest predation in shorebirds. They report that predation rates have increased since the 1950s, especially in the Arctic. We describe methodological problems with their analyses and argue that there is no solid statistical support for their claims.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.