This paper describes recent efforts to apply flow technology in the preparation of the key amino alcohol intermediate 3b so as to address manufacturability issues present in the batch process of a PRMT5 inhibitor. The continuous process, one of the first reported pharmaceutical processes to use aqueous NH 4 OH in flow, eliminates an isolation and the use of dichloromethane in the workup and improves reaction time >140-fold compared with the batch process to deliver multigram quantities of 3b in 60−65% isolated yield with >99 HPLC area % and >99% ee. While the flow process greatly increases the efficiency compared with the batch process, small-scale batch experiments were crucial in gaining reaction understanding to increase the kinetics and minimize impurity formation. The holistic process design underscores our belief that large-scale flow processes are built upon the knowledge gained through well-chosen small-scale batch experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.