The problem of character weighting in cladistic analysis is revisited. The finding that, in large molecular data sets, removal of third positions (with more homoplasy) decreases the number of well supported groups has been interpreted by some authors as indicating that weighting methods are unjustified. Two arguments against that interpretation are advanced. Characters that collectively determine few well-supported groups may be highly reliable when taken individually (as shown by specific examples), so that inferring greater reliability for sets of characters that lead to an increase in jackknife frequencies may not always be warranted. But even if changes in jackknife frequencies can be used to infer reliability, we demonstrate that jackknife frequencies in large molecular data sets are actually improved when downweighting characters according to their homoplasy but using properly rescaled functions (instead of the very strong standard functions, or the extreme of inclusion ⁄ exclusion); this further weakens the argument that downweighting homoplastic characters is undesirable. Last, we show that downweighting characters according to their homoplasy (using standard homoplasy-weighting methods) on 70 morphological data sets (with 50-170 taxa), produces clear increases in jackknife frequencies. The results obtained under homoplasy weighting also appear more stable than results under equal weights: adding either taxa or characters, when weighting against homoplasy, produced results more similar to original analyses (i.e., with larger numbers of groups that continue being supported after addition of taxa or characters), with similar or lower error rates (i.e.
The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
Aim The study aimed to establish areas of endemism and distribution patterns for Neotropical species of the genus Piper in the Neotropical and Andean regions by means of parsimony analysis of endemicity (PAE) and track‐compatibility analysis. Location The study area includes the Neotropical region and the Northern Andean region (Páramo‐Punan subregion). Methods We used distribution information from herbarium specimens and recent monographic revisions for 1152 species of Piper from the Neotropics. First, a PAE was attempted in order to delimit the areas of endemism. Second, we performed a track‐compatibility analysis to establish distribution patterns for Neotropical species of Piper. Terminology for grouping Piper is based on recent phylogenetic analyses. Results The PAE yielded 104 small endemic areas for the genus Piper, 80 of which are in the Caribbean, Amazonian and Paranensis subregions of the Neotropical region, and 24 in the Páramo‐Punan subregion of the Andean region. Track‐compatibility analysis revealed 26 generalized tracks, one in the Páramo‐Punan subregion (Andean region), 19 in the Neotropical region, and six connecting the Andean and Neotropical regions. Both the generalized tracks and endemic areas indicate that distribution of Piper species is restricted to forest areas in the Andes, Amazonia, Chocó, Central America, the Guayana Shield and the Brazilian Atlantic coast. Main conclusions Piper should not be considered an Andean‐centred group as it represents two large species components with distributions centred in the Amazonian and Andean regions. Furthermore, areas of greater species richness and/or endemism are restricted to lowland habitats belonging to the Neotropical region. The distribution patterns of Neotropical species of Piper could be explained by recent events in the Neotropical region, as is the case for the track connecting Chocó and Central America, where most of the species rich groups of the genus are found. Two kinds of event could explain the biogeography of a large part of the Piper taxa with Andean–Amazonian distribution: pre‐Andean and post‐Andean events.
Phylogenetic diversity measures rank areas for biodiversity conservation priorities based on information encoded in phylogenies (cladograms). The goal of these ranks for conservation is to consider as many factors as possible that provide additional taxic information, such as taxa richness, taxa distributional patterns, area endemicity, and complementarity between areas. At present there are many measures that consider phylogenetic information, including node-based, genetic-distance, and feature-based measures. We devised a modified phylogenetic node-based index that we call "taxonomic endemicity standardized weight," which considers not only the taxonomic distinctness of the taxa that inhabit a given area but their endemicity as well. Once the standardized weight of the taxonomic endemicity identifies the area of highest priority, complementarity can be used to identify the second area and so on. We used this node-based index to rank priority areas for conservation in southern South America, and we compared the results of our rankings to results based on other node-based indexes. Our index identified Santiago district, in Central Chile province, as the highest priority area for conservation, followed by Maule, Malvinas, and districts of Subantarctic province. Malvinas exhibits greater complementarity relative to Santiago than Maule does, however, so Malvinas is ranked second in priority. Indexes based on phylogenetic information measure the evolutionary component of biodiversity and allow one to identify areas that will ensure the preservation of evolutionary potential and phylogenetically rare taxa. The modified index we propose is sensitive to taxic distinctness and endemicity as well and allows information from diverse taxa to be combined (i.e., different cladograms). The use of complementarity allows for preservation of the maximum quantity of taxa in a minimal number of protected areas. Utilización de Medidas de Diversidad Filogenética para Definir Prioridades en Conservación: un Ejemplo del Sur de América del SurResumen: Las medidas de diversidad filogenética jerarquiza a las áreas para prioridades de conservación de biodiversidad con base en información codificada en filogenias (cladogramas), La meta de estas categorías de conservación requiere tomar en consideración tantos factores que proporcionan información adicional (riqueza de taxones, patrones de distribución de los taxones, endemicidad del área y complementariedad entre áreas) como sea posible. Actualmente hay muchas medidas que consideran información filogenética (basadas en nodos, distancia genética y basadas en características). Diseñamos un índice filogenético modificado basado en nodos que denominamos "peso estandarizado de endemicidad taxonómica", el cual considera no solo la peculiaridad genética de los taxa que habitan una región determinada sino también su endemicidad. Una vez que el peso estandarizado de endemicidad identifica el área de mayor prioridad, la complementariedad se puede usar para identificar la segunda área y así sucesivame...
The weevil subtribe Listroderina belongs in the tribe Rhytirrhinini (subfamily Cyclominae), and has 25 genera and 300 species in the Americas. The distributional history of this subtribe was reconstructed applying dispersalvicariance analysis (DIVA) using its genera as terminals. The results suggest that Listroderina originated within an area presently represented by the Central Chile, Paramo, Puna, Patagonia and Subantarctic subregions of the Andean region. Posteriorly, the subtribe was affected by extinctions and was confined to Central Chile, Paramo and Subantarctic subregions. Later, extinctions and dispersals took place and the subtribe was restricted to the Paramo and Puna subregions. From there, a dispersal event to the Subantarctic subregion occurred, enlarging again the geographical range of the subtribe. Subsequently, a vicariant event separated the Puna and Paramo subregions from the Subantarctic one. While the Macrostyphlus generic group was confined to the Paramo and Puna subregions and from there dispersed to other areas, the Antarctobius , Falklandius , Listronotus , and Listroderes generic groups diversified in the Subantarctic subregion. The results obtained by DIVA may be linked to major geological events of South America. Thus, the geobiotic scenarios recorded in this subcontinent since the late Cretaceous could be used to interpret the biogeographical events which drove Listroderina evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.