The following spatial plots compare brute force and decoupled direct method (DDM) estimates of sensitivity coefficients and zero-out source contributions. They also compare sensitivity coefficients with aerosol and aqueous processes turned off in the Community Multiscale Air Quality (CMAQ) model.
Abstract. The convective injection and subsequent fate of the peroxides H202 and CH3OOH in the upper troposphere is investigated using aircraft observations from the NASA Pacific Exploratory Mission-Tropics A (PEM-Tropics A) over the South Pacific up to 12 km altitude. Fresh convective outflow is identified by high CH3I concentrations; CH3I is an excellent tracer of marine convection because of its relatively uniform marine boundary layer concentration, relatively well-defined atmospheric lifetime against photolysis, and high sensitivity of measurement. We f'md that mixing ratios of CH3OOH in convective outflow at 8-12 km altitude are enhanced on average by a factor of 6 relative to background, while mixing ratios of H202 are enhanced by less than a factor of 2. The scavenging efficiency of H202 in the precipitation associated with deep convection is estimated to be 55-70%. Scavenging of CH3OOH is negligible. Photolysis of convected peroxides is a major source of the HO• radical family (OH + peroxy radicals) in convective outflow. The timescale for decay of the convective enhancement of peroxides in the upper troposphere is determined using CH3I as a chemical clock and is interpreted using photochemical model calculations. Decline of CH3OOH takes place on a timescale of a 1-2 days, but the resulting HOx converts to H202, so H202 mixing ratios show no decline for -•5
Satellite observations of formaldehyde (HCHO) columns provide top-down constraints on emissions of highly reactive volatile organic compounds (HRVOCs). This approach has been used previously in the US to estimate isoprene emissions from vegetation, but application to anthropogenic emissions has been stymied by lack of a discernable HCHO signal. Here we show that temporal oversampling of HCHO data from the Ozone Monitoring Instrument (OMI) for 2005-2008 enables detection of urban and industrial plumes in eastern Texas including Houston, Port Arthur, and Dallas/Fort Worth. By spatially integrating the HCHO enhancement in the Houston plume observed by OMI we estimate an anthropogenic HCHO source of 250 ± 140 kmol h −1 . This implies that anthropogenic HRVOC emissions in Houston are 4.8 ± 2.7 times higher than reported by the US Environmental Protection Agency inventory, and is consistent with field studies identifying large ethene and propene emissions from petrochemical industrial sources.
[1] Scattering and absorption of sunlight by anthropogenic aerosols reduce the photosynthetically active radiation (PAR) incident upon the Earth's surface, but increase the fraction of the PAR that is diffuse. These alterations to irradiance may elicit conflicting responses in terrestrial plants: photosynthesis and net primary productivity (NPP) are slowed by reductions in total PAR, but enhanced by increases in diffuse PAR. In this paper, we use two canopy photosynthesis models to estimate the net effect of aerosols on carbon assimilation by green plants during summertime at midlatitudes. The model calculations indicate that the net effect of PAR scattering and absorption by atmospheric aerosols on NPP can be positive, neutral, or negative. Two parameters that strongly influence the net effect are the aerosol optical depth (integral of light extinction with height) and the cloud cover. On cloudless days NPP peaks under moderately thick aerosol loadings. On overcast days, aerosols slow NPP. The implications of these results for various regions of the globe and possible directions for future studies on the effect of aerosols on plant growth are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.