[1] The Gobi desert in northwest China is an important source of mineral aerosols over both eastern Asia and the northern Pacific Ocean. In order to determine the chemical, physical, and radiative properties of aerosols originating from the Gobi desert source region, field measurements were performed in Yulin, China, in April 2001 as part of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) campaign. The means and standard deviations of the measured aerosol light absorption coefficient s ap , scattering coefficient s sp , and single-scattering albedo w are 6 Mm À1 (11 Mm À1 ), 158 Mm À1 (193 Mm À1 ), and 0.95 (0.05), respectively. A clear diurnal pattern is observed in both s ap and s sp , resulting from diurnal changes in the mixing height as well as from local combustion sources in the morning and dust sources in the afternoon. Two distinct populations of aerosol mass scattering efficiencies E scat_2.5 , one for aerosols dominated by desert dust ($1.0 m 2 g À1 ) and the other for aerosols composed primarily of local pollutants ($3.0 m 2 g À1 ), are observed. During the field study there were three significant dust events that occurred for, on average, several days at a time. The most significant dust storm resulted in a 24-hour-average PM 2.5 concentration (mass concentration of particles having aerodynamic diameters less than 2.5 mm) of 453 mg m À3 and a peak s sp of 2510 Mm À1 on 8 April. The mean PM 2.5 mass concentration during the dust storm periods is approximately 169 mg m À3 , about 4 times greater than the mean value of 44 mg m À3 observed during local pollution periods. When local pollution is the dominant source of fine particulate mass, organic matter (OM) is the major chemical component, contributing 41% to the PM 2.5 mass, followed by crustal material (29%), sulfate (17%), and elemental carbon (EC) (13%). During sand storm periods, $51% of PM 2.5 mass is crustal material, followed by CO 3 2À (11%) and OM (9.5%). The element enrichment factors indicate that coal combustion, biomass burning, and mobile source emissions are important local pollution sources. Overall, our results indicate that in addition to dust, local pollution also has a significant influence on aerosol properties in the region.
Using HRM, we identified and verified biological perturbations associated with primary traffic pollutant in panel-based setting with repeated measurement. Observed response was consistent with endogenous metabolic signaling related to oxidative stress, inflammation, and nucleic acid damage and repair. Collectively, the current findings provide support for the use of untargeted HRM in the development of metabolic biomarkers of traffic pollution exposure and response.
[1] Scattering and absorption of sunlight by anthropogenic aerosols reduce the photosynthetically active radiation (PAR) incident upon the Earth's surface, but increase the fraction of the PAR that is diffuse. These alterations to irradiance may elicit conflicting responses in terrestrial plants: photosynthesis and net primary productivity (NPP) are slowed by reductions in total PAR, but enhanced by increases in diffuse PAR. In this paper, we use two canopy photosynthesis models to estimate the net effect of aerosols on carbon assimilation by green plants during summertime at midlatitudes. The model calculations indicate that the net effect of PAR scattering and absorption by atmospheric aerosols on NPP can be positive, neutral, or negative. Two parameters that strongly influence the net effect are the aerosol optical depth (integral of light extinction with height) and the cloud cover. On cloudless days NPP peaks under moderately thick aerosol loadings. On overcast days, aerosols slow NPP. The implications of these results for various regions of the globe and possible directions for future studies on the effect of aerosols on plant growth are discussed.
Abstract. Ground-based observations have insufficient spatial coverage to assess long-term human exposure to fine particulate matter (PM 2.5 ) at the global scale. Satellite remote sensing offers a promising approach to provide information on both short-and long-term exposure to PM 2.5 at local-toglobal scales, but there are limitations and outstanding questions about the accuracy and precision with which groundlevel aerosol mass concentrations can be inferred from satellite remote sensing alone. A key source of uncertainty is the global distribution of the relationship between annual average PM 2.5 and discontinuous satellite observations of columnar aerosol optical depth (AOD). We have initiated a global network of ground-level monitoring stations designed to evaluate and enhance satellite remote sensing estimates for application in health-effects research and risk assessment. This Surface PARTiculate mAtter Network (SPARTAN) includes a global federation of ground-level monitors of hourly PM 2.5 situated primarily in highly populated regions and collocated with existing ground-based sun photometers that measure AOD. The instruments, a three-wavelength nephelometer and impaction filter sampler for both PM 2.5 and PM 10 , are highly autonomous. Hourly PM 2.5 concentrations are inferred from the combination of weighed filters and nephelometer data. Data from existing networks were used to develop and evaluate network sampling characteristics. SPARTAN filters are analyzed for mass, black carbon, watersoluble ions, and metals. These measurements provide, in a variety of regions around the world, the key data required to evaluate and enhance satellite-based PM 2.5 estimates used for assessing the health effects of aerosols. Mean PM 2.5 concentrations across sites vary by more than 1 order of magnitude. Our initial measurements indicate that the ratio of AOD to ground-level PM 2.5 is driven temporally and spatially by the vertical profile in aerosol scattering. Spatially this ratio is also strongly influenced by the mass scattering efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.