Oxygen is the most common element after hydrogen and helium in Jupiter's atmosphere, and may have been the primary condensable (as water ice) in the protoplanetary disk. Prior to the Juno mission, in situ measurements of Jupiter's water abundance were obtained from the Galileo Probe, which dropped into a meteorologically anomalous site. The findings of the Galileo Probe were inconclusive because the concentration of water was still increasing when the probe died. Here, we initially report on the water abundance in the equatorial region, from 0 to 4 degrees north latitude, based on 1.25 to 22 GHz data from Juno Microwave radiometer probing approximately 0.7 to 30 bars pressure. Because Juno discovered the deep atmosphere to be surprisingly variable as a function of latitude, it remains to confirm whether the equatorial abundance represents Jupiter's global water abundance. The water abundance at the equatorial region is inferred to be. !. %. × ppm, or. !. %. times the protosolar oxygen elemental ratio to H (1 uncertainties). If reflective of the global water abundance, the result suggests that the planetesimals formed Jupiter are unlikely to be water-rich clathrate hydrates. From thermodynamic calculations 1 , three types of cloud layers in the Jovian atmosphere are thought to exist: an ammonia ice cloud, an ammonium hydrosulfide ice cloud 2,3 , and a water ice and droplet cloud, formed approximately at 0.7 bars, 2.2 bars, and 5 bars, respectively, assuming solar abundances. The locations of these clouds may vary due to the local abundance, meteorology and specific model parameters. Condensation and evaporation of water contribute to weather on giant planets because water is the most abundant species apart from hydrogen and helium and the latent heat flux in convective storms is comparable to the solar and internal heat fluxes 4,5. Consequently, the thermal state of the atmosphere is affected by the amount of water vapor in the atmosphere. Prior to the Juno mission, in situ measurements of Jupiter's atmospheric composition below the clouds were obtained from the Galileo Probe 6 , which dropped into a meteorologically anomalous site (6.57° N planetocentric latitude , 4.46° W longitude) 7 , known as a 5 "hot spot" near the boundary between the visibly-bright Equatorial Zone (EZ) and the dark North Equatorial Belt (NEB) 8. The findings of the Galileo Probe were baffling, for they showed that the levels where ammonia and hydrogen sulfide become uniformly