A series of 12 polysubstituted pyrrolo[3,4-b]pyridin-5-ones were synthesized via a one-pot cascade process (Ugi–3CR/aza Diels-Alder/N-acylation/decarboxylation/dehydration) and studied in vitro using human epithelial cervical carcinoma SiHa, HeLa, and CaSki cell line cultures. Three compounds of the series exhibited significative cytotoxicity against the three cell lines, with HeLa being the most sensitive one. Then, based on these results, in silico studies by docking techniques were performed using Paclitaxel as a reference and αβ-tubulin as the selected biological target. Worth highlighting is that strong hydrophobic interactions were observed between the three active molecules and the reference drug Paclitaxel, to the αβ-tubulin. In consequence, it was determined that hydrophobic–aromatic moieties of bioactive compounds and Paclitaxel play a key role in making stronger interactions to the ligand–target complex. A quantitative structure activity relationship (QSAR) study revealed that the six membered rings are the most significant molecular frameworks, being present in all proposed models for the in vitro-studied cell lines. Finally, also from the docking interpretation, a ligand-based pharmacophore model is proposed in order to find further potential polyheterocyclic candidates to bind stronger to the αβ-tubulin.
Eight novel 2-aminonitrile oxazoles were synthesized efficiently and quickly via an Ugi reaction in its three-component version in moderate to good yields (61-79%) at room temperature or in good to excellent yields (73-90%) under ultrasound irradiation (USI) conditions. It is noteworthy that not only the yields were improved by using USI, also the reaction times decreased considerably, from 3 hours (at r.t.) to 1 hour (under USI), depending on the substituents in the final products, which are highly functionalized because have an amino group, a nitrile group, an oxazole group and a very reactive methylene-linked biaryl. In this context, they can be used for further condensations, cyclizations and/or functionalizations toward a variety of compounds with potential applications in several fields of knowledge like optics, material science and medicinal chemistry.
A series of eight new 5-aryl-benzo[f][1,7]naphthyridines were synthesized in 17 to 64% overall yields via an improved MW-assisted cascade-like one pot process (Ugi–three component reaction/intramolecular aza-Diels-Alder cycloaddition) coupled to an aromatization process from tri-functional dienophile-containing ester-anilines, substituted benzaldehydes and the chain-ring tautomerizable 2-isocyano-1-morpholino-3-phenylpropan-1-one as starting reagents, under mild conditions. The doubly activated dienophile and the aza-diene functionalities of the eight new Ugi-adducts were exploited to perform an in situ aza-Diels-Alder cycloaddition/aromatization (dehydration/oxidation) process, toward the complex polysubstituted 5-aryl-polyheterocycles, which could be taken as starting point for further SAR studies because the benzo[f][1,7]naphthyridine is the core of various bioactive products. It is relevant to emphasize that the synthesis or isolation of benzo[f][1,7]naphthyridines containing a substituted aromatic ring in the C-5 position, has not been published before.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.