Sleep is essential to human life. Sleep patterns are significantly disrupted in patients who are hospitalized, particularly those in the intensive care unit. Sleep deprivation is pervasive in this patient population and impacts health and recovery from illness. Immune system dysfunction, impaired wound healing, and changes in behavior are all observed in patients who are sleep deprived. Various factors including anxiety, fear, and pain are responsible for the sleep deprivation. Noise, light exposure, and frequent awakenings from caregivers also add to these effects. Underlying medical illnesses and medications can also dramatically affect a patient's ability to sleep efficiently. Therapy with attempts to minimize sleep disruption should be integrated among all of the caregivers. Minimization of analgesics and other medications known to adversely affect sleep should also be ensured. Although further research in the area of sleep deprivation in the intensive care unit setting needs to be conducted, effective protocols can be developed to minimize sleep deprivation in these settings.
Lung volume reduction surgery (LVRS) has been suggested as improving respiratory mechanics in patients with severe chronic obstructive pulmonary disease (COPD). We hypothesized that LVRS might lengthen the diaphragm, increase its area of apposition with the chest wall, and thereby improve its mechanical function. To determine the effect of bilateral LVRS on diaphragm length, we measured diaphragm length at TLC, using plain chest roentgenograms (CXRs), in 25 patients (11 males and 14 females) before LVRS and 3 to 6 mo after LVRS. A subgroup of seven patients (reference data) also had diaphragm length measurements made with CXRs, using films made within a year before their presurgical evaluation. Right hemidiaphragm silhouette length (PADL) and the length of the most vertically oriented portion of the right hemidiaphragm muscle (VDML) were measured. Diaphragm dome height was determined from the: (1) distance between the dome and transverse diameter at the manubrium; and (2) highest point of the dome referenced horizontally to the vertebral column. Patients also underwent spirometry, measurements of lung volumes and diffusion capacity, an incremental symptom-limited maximum exercise test, and measurements of 6 min walk distance (6MWD) and transdiaphragmatic pressures during maximum static inspiratory efforts (Pdimax sniff) and bilateral supramaximal electrophrenic twitch stimulation (Pditwitch) both before and 3 mo after LVRS. Patients were 58 +/- 8 yr of age, with severe COPD and hyperinflation (FEV1 = 0.68 +/- 0.23 L, FVC = 2.56 +/- 7.3 L, and TLC = 143 +/- 22% predicted). Following LVRS, PADL increased by 4% (from 13.9 +/- 1.9 cm to 14.5 +/- 1.7 cm; p = 0.02), VDML increased by 44% (from 2.08 +/- 1.5 cm to 3.00 +/- 1.6 cm, p = 0.01), and diaphragm dome height increased by more than 10%. In contrast, diaphragm lengths were similar in subjects with CXRs made before LVRS and within 1 yr before evaluation. The increase in diaphragm length correlated directly with postoperative reductions in TLC and RV, and also with increases in transdiaphragmatic pressure with maximal sniff (Pdimax sniff), maximal oxygen consumption (V O2max), maximal minute ventilation (V Emax), and maximum voluntary ventilation following LVRS. We conclude that LVRS leads to a significant increase in diaphragm length, especially in the area of apposition of the diaphragm with the rib cage. Diaphragm lengthening after LVRS is most likely the result of a reduction in lung volume. Increases in diaphragm length after LVRS correlate with postoperative improvements in diaphragm strength, exercise capacity, and maximum voluntary ventilation.
Patients with severe chronic obstructive pulmonary disease (COPD) have varying degrees of hypercapnia. Recent studies have demonstrated inconsistent effects of lung volume reduction surgery (LVRS) on PaCO2; however, most series have excluded patients with moderate to severe hypercapnia. In addition, no study has examined the mechanisms responsible for the reduction in PaCO2 post-LVRS. We obtained spirometry, body plethysmography, diffusion capacity, respiratory muscle strength, 6-min walk test, and incremental symptom-limited maximal exercise data in 33 consecutive patients pre- and 3 to 6 mo post-LVRS, and explored the relationship between changes in PaCO2 and changes in the measured physiologic variables. All patients underwent bilateral LVRS via median sternotomy and stapling resection by the same cardiothoracic surgeon. Patients were 57 +/- 8 yr of age with severe COPD, hyperinflation, and air trapping (FEV1, 0.73 +/- 0.2 L; TLC, 7.3 +/- 1.6 L; residual volume [RV], 4.8 +/- 1.4 L), and moderate resting hypercapnia (PaCO2, 44 +/- 7 mm Hg; range, 32 to 56 mm Hg). Post-LVRS, PaCO2 decreased by 4% (PaCO2 pre 44 +/- 7 mm Hg, PaCO2 post 42 +/- 5 mm Hg; p = 0.003). Patients with higher baseline values of PaCO2 had the greatest reduction in PaCO2 post-LVRS (r = -0.61, p < 0.001). Significant correlations existed between reduction in PaCO2 and changes in FEV1 (r = -0.56; p = 0.0007), maximal inspiratory pressure (PImax) (r = -0.46; p = 0.009), diffusing capacity of the lungs for carbon monoxide (DLCO) (r = -0.47; p = 0.008), and RV/TLC (r = 0.41; p = 0. 02). Correlation existed also between reduction in PaCO2 and breathing pattern at maximal exercise: maximal minute ventilation (V Emax) (r = -0.47; p = 0.009), and tidal volume (VT) (r = -0.40; p = 0.02). The changes in PaCO2 post-LVRS showed marked intersubject variability. We conclude that LVRS, by reducing hyperinflation, air trapping, and improving respiratory muscle function, enables the lung and chest wall to act more effectively as a pump, thereby increasing alveolar ventilation and reducing baseline resting PaCO2. In addition, patients with higher baseline levels of PaCO2 demonstrate the greatest reduction in PaCO2 post-LVRS, and should not be excluded from receiving LVRS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.