Early embryogenesis is the critical developmental phase during which the basic features of the plant body are established: the apical-basal axis of polarity, different tissue layers, and both the root pole and the shoot pole. Polarization of the zygote correlates with the generation of apical and basal (embryonic and extraembryonic) cell fates. Whereas mechanisms of zygote polarization are still largely unknown, distinct expression domains of WOX family transcription factors as well as directional auxin transport and local auxin response are known to be involved in early apical-basal patterning. Radial patterning of tissue layers appears to be mediated by cell-cell communication involving both peptide signaling and transcription factor movement. Although the initiation of the shoot pole is still unclear, the apical organization of the embryo depends on both the proper establishment of transcription factor expression domains and, for cotyledon initiation, upward auxin flow in the protoderm. Here we focus on the essential patterning processes, drawing mainly on data from Arabidopsis thaliana and also including relevant data from other species if available.
Syntaxins and interacting SNARE proteins enable membrane fusion in diverse trafficking pathways. The Arabidopsis SYP1 family of plasma membrane-localized syntaxins comprises nine members, of which KNOLLE and PEN1 play specific roles in cytokinesis and innate immunity, respectively. To identify mechanisms conferring specificity of action, we examined one member of each subfamily -KNOLLE/SYP111, PEN1/SYP121 and SYP132 -in regard to subcellular localization, dynamic behavior and complementation of knolle and pen1 mutants when expressed from the same promoters. Our results suggest that cytokinesis-specific syntaxin requires high-level accumulation during cell-plate formation, which necessitates de novo synthesis rather than endocytosis of pre-made protein from the plasma membrane. In contrast, syntaxin in innate immunity does not need upregulation of expression but instead requires pathogen-induced and endocytosis-dependent retargeting to the infection site. This feature of PEN1 is not afforded by SYP132. Additionally, PEN1 could not substitute for KNOLLE because of SNARE domain differences, as revealed by protein chimeras. In contrast, SYP132 was able to rescue knolle as did KNOLLE-SYP132 chimeras. Unlike KNOLLE and PEN1, which appear to have evolved to perform specialized functions, SYP132 stably localized at the plasma membrane and thus might play a role in constitutive membrane fusion. SNARE proteins constitute a family of membraneanchored proteins that play key roles in membrane fusion events of intracellular trafficking pathways by forming SNARE complexes that dock membranes to be fused. Their main characteristic feature is an evolutionarily conserved domain of 60-70 amino acids arranged in heptad repeats, which has been designated the SNARE domain (1). Based on the conserved amino-acid residue at the center of the SNARE domain, SNARE proteins have been classified into R-(arginine) and Q-(glutamine) SNAREs. The Q-SNARE family is further divided into four subfamilies (Qa-, Qb-, Qc-and Qb,cSNAREs) based on differences in the structure of the SNARE domain (2). Each SNARE complex is formed by association of four interacting SNARE domains, one each from VAMP/R-SNARE on the donor membrane and three from Q-SNAREs on the acceptor membrane: one from syntaxin/Qa-SNARE and two from either SNAP25/Qb,c-SNARE or one each from two t-SNARE light chains/Qband Qc-SNAREs (1).
In multicellular organisms, cellular differences in gene activity are a prerequisite for differentiation and establishment of cell types. In order to study transcriptome profiles, specific cell types have to be isolated from a given tissue or even the whole organism. However, wholetranscriptome analysis of early embryos in flowering plants has been hampered by their size and inaccessibility. Here, we describe the purification of nuclear RNA from early stage Arabidopsis thaliana embryos using fluorescence-activated nuclear sorting (FANS) to generate expression profiles of early stages of the whole embryo, the proembryo and the suspensor. We validated our datasets of differentially expressed candidate genes by promoter-reporter gene fusions and in situ hybridization. Our study revealed that different classes of genes with respect to biological processes and molecular functions are preferentially expressed either in the proembryo or in the suspensor. This method can be used especially for tissues with a limited cell population and inaccessible tissue types. Furthermore, we provide a valuable resource for research on Arabidopsis early embryogenesis.
Intracellular membrane fusion is effected by SNARE proteins that reside on adjacent membranes and form bridging trans-SNARE complexes. Qa-SNARE members of the Arabidopsis SYP1 family are involved in membrane fusion at the plasma membrane or during cell plate formation. Three SYP1 family members have been classified as pollen-specific as inferred from gene expression profiling studies, and two of them, SYP124 and SYP125, are confined to angiosperms. The SYP124 gene appears genetically unstable, whereas its sister gene SYP125 shows essentially no variation among Arabidopsis accessions. The third pollen-specific member SYP131 is sister to SYP132, which appears evolutionarily conserved in the plant lineage. Although evolutionarily diverse, the three SYP1 proteins are functionally overlapping in that only the triple mutant syp124 syp125 syp131 shows a specific and severe male gametophytic defect. While pollen development and germination appear normal, pollen tube growth is arrested during passage through the style. Our results suggest that angiosperm pollen tubes employ a combination of ancient and modern Qa-SNARE proteins to sustain their growth-promoting membrane dynamics during the reproductive process.
In flowering plants, the asymmetrical division of the zygote is the first hallmark of apical-basal polarity of the embryo and is controlled by a MAP kinase pathway that includes the MAPKKK YODA (YDA). In Arabidopsis, YDA is activated by the membraneassociated pseudokinase SHORT SUSPENSOR (SSP) through an unusual parent-of-origin effect: SSP transcripts accumulate specifically in sperm cells but are translationally silent. Only after fertilization is SSP protein transiently produced in the zygote, presumably from paternally inherited transcripts. SSP is a recently diverged, Brassicaceae-specific member of the BRASSINOSTEROID SIGNALING KINASE (BSK) family. BSK proteins typically play broadly overlapping roles as receptorassociated signaling partners in various receptor kinase pathways involved in growth and innate immunity. This raises two questions: How did a protein with generic function involved in signal relay acquire the property of a signal-like patterning cue, and how is the early patterning process activated in plants outside the Brassicaceae family, where SSP orthologs are absent? Here, we show that Arabidopsis BSK1 and BSK2, two close paralogs of SSP that are conserved in flowering plants, are involved in several YDA-dependent signaling events, including embryogenesis. However, the contribution of SSP to YDA activation in the early embryo does not overlap with the contributions of BSK1 and BSK2. The loss of an intramolecular regulatory interaction enables SSP to constitutively activate the YDA signaling pathway, and thus initiates apical-basal patterning as soon as SSP protein is translated after fertilization and without the necessity of invoking canonical receptor activation.Arabidopsis thaliana | evolution | MAP kinase signaling | embryogenesis |
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.