The act of measurement bridges the quantum and classical worlds by projecting a superposition of possible states into a single (probabilistic) outcome. The timescale of this 'instantaneous' process can be stretched using weak measurements, such that it takes the form of a gradual random walk towards a final state. Remarkably, the interim measurement record is sufficient to continuously track and steer the quantum state using feedback. Here we implement quantum feedback control in a solid-state system, namely a superconducting quantum bit (qubit) coupled to a microwave cavity. A weak measurement of the qubit is implemented by probing the cavity with microwave photons, maintaining its average occupation at less than one photon. These photons are then directed to a high-bandwidth, quantum-noise-limited amplifier, which allows real-time monitoring of the state of the cavity (and, hence, that of the qubit) with high fidelity. We demonstrate quantum feedback control by inhibiting the decay of Rabi oscillations, allowing them to persist indefinitely. Such an ability permits the active suppression of decoherence and enables a method of quantum error correction based on weak continuous measurements. Other applications include quantum state stabilization, entanglement generation using measurement, state purification and adaptive measurements.
We continuously measure the state of a superconducting quantum bit coupled to a microwave readout cavity by using a fast, ultralow-noise parametric amplifier. This arrangement allows us to observe quantum jumps between the qubit states in real time, and should enable quantum error correction and feedback--essential components of quantum information processing.
There is currently fundamental and technological interest in measuring and manipulating nanoscale magnets, particularly in the quantum coherent regime. To observe the dynamics of such systems one requires a magnetometer with not only exceptional sensitivity but also high gain, wide bandwidth and low backaction. We demonstrate a dispersive magnetometer consisting of a two-junction SQUID in parallel with an integrated, lumped-element capacitor. Input flux signals are encoded as a phase modulation of the microwave drive tone applied to the magnetometer, resulting in a single quadrature voltage signal. For strong drive power, the nonlinearity of the resonator results in quantum limited, phase sensitive parametric amplification of this signal, which improves flux sensitvity at the expense of bandwidth. Depending on the drive parameters, the device performance ranges from an effective flux noise of 0.29 µΦ0Hz
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.