The act of measurement bridges the quantum and classical worlds by projecting a superposition of possible states into a single (probabilistic) outcome. The timescale of this 'instantaneous' process can be stretched using weak measurements, such that it takes the form of a gradual random walk towards a final state. Remarkably, the interim measurement record is sufficient to continuously track and steer the quantum state using feedback. Here we implement quantum feedback control in a solid-state system, namely a superconducting quantum bit (qubit) coupled to a microwave cavity. A weak measurement of the qubit is implemented by probing the cavity with microwave photons, maintaining its average occupation at less than one photon. These photons are then directed to a high-bandwidth, quantum-noise-limited amplifier, which allows real-time monitoring of the state of the cavity (and, hence, that of the qubit) with high fidelity. We demonstrate quantum feedback control by inhibiting the decay of Rabi oscillations, allowing them to persist indefinitely. Such an ability permits the active suppression of decoherence and enables a method of quantum error correction based on weak continuous measurements. Other applications include quantum state stabilization, entanglement generation using measurement, state purification and adaptive measurements.
Recent progress in solid state quantum information processing has stimulated the search for ultralow-noise amplifiers and frequency converters in the microwave frequency range, which could attain the ultimate limit imposed by quantum mechanics. In this article, we report the first realization of an intrinsically phase-preserving, non-degenerate superconducting parametric amplifier, a so far missing component. It is based on the Josephson ring modulator, which consists of four junctions in a Wheatstone bridge configuration. The device symmetry greatly enhances the purity of the amplification process and simplifies both its operation and analysis. The measured characteristics of the amplifier in terms of gain and bandwidth are in good agreement with analytical predictions.Using a newly developed noise source, we also show that our device operates within a factor of three of the quantum limit. This development opens new applications in the area of quantum analog signal processing.In this article, we focus on parametric amplifiers which are powered by an ac source with frequency f p also known as the "pump". Such amplifiers operate with a minimal number of degrees of freedom and are the natural candidates for ultra low noise operation [1,2]. A single spatial and temporal mode of the electromagnetic field with carrier frequency f can be decomposed into its in-phase A cos 2πf t arXiv:0912.3407v1 [cond-mat.mes-hall]
We continuously measure the state of a superconducting quantum bit coupled to a microwave readout cavity by using a fast, ultralow-noise parametric amplifier. This arrangement allows us to observe quantum jumps between the qubit states in real time, and should enable quantum error correction and feedback--essential components of quantum information processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.