It has been long stated that there are profound analogies between fracture experiments and earthquakes; however, few works attempt a complete characterization of the parallelisms between these so separate phenomena. We study the Acoustic Emission events produced during the compression of Vycor (SiO2). The Gutenberg-Richter law, the modified Omori's law, and the law of aftershock productivity hold for a minimum of 5 decades, are independent of the compression rate, and keep stationary for all the duration of the experiments. The waiting-time distribution fulfills a unified scaling law with a power-law exponent close to 2.45 for long times, which is explained in terms of the temporal variations of the activity rate.
Compression experiments of goethite samples from an iron ore mine in New Caledonia revealed the collapse of the porous samples to follow a power law behavior. The porosity varies between 54 and 84%. The collapse under compression occurs in a series of individual events (avalanches). Each avalanche leads to a jerk in sample compression and an equivalent acoustic emission signal. The probability to find an acoustic emission signal with an energy within E and E + dE is p(E)dE, which has a power law distribution p(E) ∼ E -ε , and reveals avalanche criticality. The energy exponent ε varies systematically with the porosity of the sample between 1.6 and 2. The results are compared with previous measurements of porous silica (Vycor), which showed a slightly smaller exponent of 1.4.We observe fore-and after-shocks of the largest events. Significant correlations between the largest avalanches and fore-shocks were found in samples with high porosity. These correlations open the possibility for the prediction of a major collapse by acoustic detection of noise.
We have studied magnetocaloric and elastocaloric properties of a Ni-Mn-Sn(Cu) metamagnetic shape-memory alloy undergoing a magneto-structural transition (martensitic type) close to room temperature. Changes of entropy have been induced by isothermally applying both mechanical (uniaxial stress) and magnetic fields. These entropy changes have been, respectively, estimated from dilatometric measurements giving the length of the sample as a function of temperature at selected applied forces and magnetic fields and from magnetization measurements as a function of temperature at selected applied magnetic fields. Our results indicate that the elastocaloric effect is conventional and occurs in two steps which reflect the interplay between the martensitic and the incipient magnetic transitions. By contrast, the magnetocaloric effect is inverse and occurs in a single step that encompasses the effect arising from both transitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.