Spiral-based k-space trajectories were applied in a spectroscopic imaging sequence with time-varying readout gradients to collect volumetric chemical shift information. In addition to spectroscopic imaging of low signal-to-noise ratio (SNR) brain metabolites, the spiral trajectories were used to rapidly collect reference signals from the high SNR water signal to automatically phase the spectra and to aid the reconstruction of metabolite maps. Spectral-spatial pulses were used for excitation and water suppression. The pulses were designed to achieve stable phase profiles in the presence of up to 20% variation in the radiofrequency field. A gridding algorithm was used to resample the data onto a rectilinear grid before fast Fourier transforms. This method was demonstrated by in vivo imaging of brain metabolites at 1.5 T with 10 slices of 18 x 18 pixels each. Nominal voxel size was 1.1 cc, spectral bandwidth was 400 Hz, scan time was 18 min for the metabolite scan and 3 min for the reference scan.
The imaging of dynamic processes in the body is of considerable interest in interventional examinations as well as kinematic studies, and spiral imaging is a fast magnetic resonance imaging technique ideally suited for such fluoroscopic applications. In this manuscript, magnetic resonance fluoroscopy pulse sequences in which interleaved spirals are used to continuously acquire data and reconstruct one movie frame for each repetition time interval are implemented. For many applications, not all of k-space needs to be updated each frame, and nonuniform k-space sampling can be used to exploit this rapid imaging strategy by allowing variable update rates for different spatial frequencies. Using the appropriate reconstruction algorithm, the temporal updating rate for each spatial frequency is effectively proportional to the corresponding k-space sampling density. Results from a motion phantom as well as in in vivo gadolinium diethylenetriaminopentaacetic acid (Gd-DTPA) bolus tracking studies in a rat model demonstrate the high temporal resolution achievable using these techniques as well as the tradeoffs available with nonuniform sampling densities. This paper focuses on the acquisition of real-time dynamic information, and all images presented are reconstructed retrospectively. The issues of real-time data reconstruction and display are not addressed.
Dynamic shimming has been implemented in three pulse sequences on a commercial GE Signa 1.5-T imaging system. Multi-slice field maps are acquired before the imaging sequence, and linear shim terms and center frequencies are calculated for each slice. During the imaging scan, the linear shim terms and center frequency are set before each pulse sequence repetition according to the current slice. Acquisition of multi-slice field maps and calculation of shim terms and center frequency for each slice are accomplished in a matter of seconds. Pulse sequences require only minimal modification to add dynamic shimming capability. Results are shown for a fat saturation spin-echo sequence, a single-shot echo-planar gradient-recalled echo sequence, and a spiral acquisition gradient-recalled echo sequence. In all cases, dynamic shimming with shim currents and center frequency optimized for each slice is shown to give better results than constant shim currents and a single center frequency optimized for the entire volume of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.