Spiral-based k-space trajectories were applied in a spectroscopic imaging sequence with time-varying readout gradients to collect volumetric chemical shift information. In addition to spectroscopic imaging of low signal-to-noise ratio (SNR) brain metabolites, the spiral trajectories were used to rapidly collect reference signals from the high SNR water signal to automatically phase the spectra and to aid the reconstruction of metabolite maps. Spectral-spatial pulses were used for excitation and water suppression. The pulses were designed to achieve stable phase profiles in the presence of up to 20% variation in the radiofrequency field. A gridding algorithm was used to resample the data onto a rectilinear grid before fast Fourier transforms. This method was demonstrated by in vivo imaging of brain metabolites at 1.5 T with 10 slices of 18 x 18 pixels each. Nominal voxel size was 1.1 cc, spectral bandwidth was 400 Hz, scan time was 18 min for the metabolite scan and 3 min for the reference scan.
To reduce the scan time in three-dimensional (3D) imaging, the authors consider alternative trajectories for traversing k-space. They differ from traditional 3D trajectories, such as 3DFT, in that they employ time-varying gradients allowing longer readouts and in turn a reduced scan time. Some of these trajectories reduce by an order of magnitude the number of excitations compared with 3DFT and provide flexibility for trading off signal-to-noise ratio for scan time. Other concerns are the minimum echo time and flow/motion properties. As examples, the authors show two applications: A 3D data set of the head (field of view of 30 x 30 x 7.5 cm and resolution of 1.5 x 1.5 x 1.5 mm) acquired in 56 s using a stack of spirals in 3D k-space; and a 3D movie of the heart (20 x 20 x 20 cm field of view, 2 x 2 x 2 mm resolution, and 16 time frames per cardiac cycle) acquired in 11 min using a cones trajectory.
A fast and robust method for correcting magnetic resonance image distortion due to field inhomogeneity is proposed and applied to spiral k-space scanning. The method consists of acquiring a local field map, finding the best fit to a linear map, and using it to deblur the image distortions due to local frequency variations. The linear field map is determined using a maximum likelihood estimator with weights proportional to the pixel intensity. The method requires little additional computation and is robust in low signal regions and near abrupt field changes. Additionally, it can be used in combination with other deblurring methods. The application of this method is illustrated in conjunction with a multislice, T2-weighted, breath-held spiral scan of the liver.
A velocity k-space formalism facilitates the analysis of flow effects for imaging sequences involving time-varying gradients such as echo-planar and spiral. For each sequence, the velocity k-space trajectory can be represented by kv(kr); that is, its velocity-frequency (kv) position as a function of spatial-frequency (kr) position. In an echo-planar sequence, kv is discontinuous and asymmetric. However, in a spiral sequence, kv is smoothly varying, circularly symmetric, and small near the kr origin. To compare the effects of these trajectory differences, simulated images were generated by computing the k-space values for an in-plane vessel with parabolic flow. Whereas the resulting echo-planar images demonstrate distortions and ghosting that depend on the vessel orientation, the spiral images exhibit minimal artifacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.