Global warming intensifies the hydrological cycle by altering the rate of water fluxes to and from the terrestrial surface, resulting in an increase in extreme precipitation events and longer dry spells. Prior hydrological intensification work has largely focused on precipitation without joint consideration of evaporative demand changes and how plants respond to these changes. Informed by state‐of‐the‐art climate models, we examine projected changes in hydrological intensification and its role in complicating water resources management using a framework that accounts for precipitation surplus and evaporative demand. Using a metric that combines the difference between daily precipitation and daily evaporative demand (surplus events) and consecutive days when evaporative demand exceeds precipitation (deficit time), we show that, globally, surplus events will become larger (+11.5% and +18.5% for moderate and high emission scenarios, respectively) and the duration between them longer (+5.1%; +9.6%) by the end of the century, with the largest changes in the northern latitudes. The intra‐annual occurrence of these extremes will stress existing water management infrastructure in major river basins, where over one third of years during 2070–2100 under a moderate emissions scenario will be hydrologically intense (large intra‐annual increases in surplus intensity and deficit time), tripling that of the historical baseline. Larger increases in hydrologically intense years are found in basins with large reservoir capacity (e.g., Amazon, Congo, and Danube River Basins), which have significant populations, irrigate considerable farmland, and support threatened and endangered aquatic species. Incorporating flexibility into water resource infrastructure and management will be paramount with continued hydrological intensification.
Streambank erosion is difficult to quantify; models and field methods are needed to assess this important sediment source to streams. Our objectives were to (1) evaluate and compare three techniques for quantifying streambank erosion: erosion pins, total station, and laser scanning, (2) spatially assess streambank erosion rates in the Indian Mill Creek watershed of Michigan, USA, and (3) relate results with modeling of nonpoint source pollution. We found large absolute and relative errors between the different measurement techniques. However, we were unable to determine any statistically significant differences between techniques and only observed a correlation between total station and laser scanner. This suggests that the three methods have limited comparability and differences between measurements were largely not systemic. Further, the application of each technique should be dependent on site conditions, project goals, desired resolution, and resources. The laser scanner collected high-resolution data on clear, barren streambanks, but the erosion pin and total station were more representative of complex vegetated banks. Streambank erosion rates varied throughout the watershed and were influenced by fluvial processes. We estimate that streambank erosion contributed 28.5% of the creek’s total sediment load. These findings are important to address sources of watershed impairments related to sedimentation, as choosing an applicable technique for individual purposes can help reduce the challenges and costs of a streambank erosion study.
The selection of calibration and validation time periods in hydrologic modelling is often done arbitrarily. Nonstationarity can lead to an optimal parameter set for one period which may not accurately simulate another. However, there is still much to be learned about the responses of hydrologic models to nonstationary conditions. We investigated how the selection of calibration and validation periods can influence water balance simulations. We calibrated Soil and Water Assessment Tool hydrologic models with observed streamflow for three United States watersheds (St. Joseph River of Indiana/Michigan, Escambia River of Florida/Alabama, and Cottonwood Creek of California), using time period splits for calibration/validation. We found that the choice of calibration period (with different patterns of observed streamflow, precipitation, and air temperature) influenced the parameter sets, leading to dissimilar simulations of water balance components. In the Cottonwood Creek watershed, simulations of 50-year mean January streamflow varied by 32%, because of lower winter precipitation and air temperature in earlier calibration periods on calibrated parameters, which impaired the ability for models calibrated to earlier periods to simulate later periods. Peaks of actual evapotranspiration for this watershed also shifted from April to May due to different parameter values depending on the calibration period's winter air temperatures. In the St. Joseph and Escambia River watersheds, adjustments of the runoff curve number parameter could vary by 10.7% and 20.8%, respectively, while 50-year mean monthly surface runoff simulations could vary by 23%-37% and 169%-209%, depending on the observed streamflow and precipitation of the chosen calibration period. It is imperative that calibration and validation time periods are chosen selectively instead of arbitrarily, for instance using change point detection methods, and that the calibration periods are appropriate for the goals of the study, considering possible broad effects of nonstationary time series on water balance simulations. It is also crucial that the hydrologic modelling community improves existing calibration and validation practices to better include nonstationary processes.
The 2021 emergence of the 17‐year Brood X cicadas (Magicicada septendecim, M. cassinii, and M. septendecula) saw billions of cicadas emerge from the soil throughout the midwestern and eastern United States. The emergence left connected burrows visible at the surface, which are hypothesized to affect near surface hydrologic processes. To investigate these processes, we used single‐ring, dual head infiltrometers to measure field saturated hydraulic conductivity (Kfs, n = 70) across patterns of emergence and land use in south‐central Indiana, USA. Our experimental design included locations with and without cicada burrows in forested (undisturbed) and urbanized (disturbed) areas. Across undisturbed sites, we found a significant 80.8% increase in Kfs between soils with (median = 14.1 cm/h; n = 20) and without (median = 7.8 cm/h; n = 20) cicada burrows. At disturbed sites, we found no significant difference in Kfs between sites with (median = 4.2 cm/h; n = 18) and without (median = 4.4 cm/h; n = 12) cicada burrows. We found a significant correlation between the number of burrows present at the surface and Kfs rates for undisturbed sites (ρ$$ \rho $$ = 0.42; p = 0.008), while no correlation was found for the disturbed sites (ρ$$ \rho $$ = −0.09; p = 0.62). Our measurements suggest that the effect of burrows on Kfs is minimized in urbanized areas, potentially due to compaction and other impacts from human disturbance that mitigate the presence of macropores left by cicadas. In contrast, surface‐connected macroporosity from Brood X cicada burrows in undisturbed areas act as a conduit for precipitation into the soil profile and bypass flow into deeper horizons and the shallow groundwater table, with implications for runoff dynamics, soil and groundwater recharge and quality, and nutrient cycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.