Despite the tremendous market penetration of smartphones, their utility has been and will remain severely limited by their battery life. A major source of smartphone battery drain is accessing the Internet over cellular or WiFi connection when running various apps and services. Despite much anecdotal evidence of smartphone users experiencing quicker battery drain in poor signal strength, there has been limited understanding of how often smartphone users experience poor signal strength and the quantitative impact of poor signal strength on the phone battery drain. The answers to such questions are essential for diagnosing and improving cellular network services and smartphone battery life and help to build more accurate online power models for smartphones, which are building blocks for energy profiling and optimization of smartphone apps.In this paper, we conduct the first measurement and modeling study of the impact of wireless signal strength on smartphone energy consumption. Our study makes four contributions. First, through analyzing traces collected on 3785 smartphones for at least one month, we show that poor signal strength of both 3G and WiFi is routinely experienced by smartphone users, both spatially and temporally. Second, we quantify the extra energy consumption on data transfer induced by poor wireless signal strength. Third, we develop a new power model for WiFi and 3G that incorporates the signal strength factor and significantly improves the modeling accuracy over the previous state of the art. Finally, we perform what-if analysis to quantify the potential energy savings from opportunistically delaying network traffic by exploring the dynamics of signal strength experienced by users.
Abstract. We describe Device Analyzer, a robust data collection tool which is able to reliably collect information on Android smartphone usage from an open community of contributors. We collected the largest, most detailed dataset of Android phone use publicly available to date. In this paper we systematically evaluate smartphones as a platform for mobile ubiquitous computing by quantifying access to critical resources in the wild. Our analysis of the dataset demonstrates considerable diversity in behaviour between users but also over time. We further demonstrate the value of handset-centric data collection by presenting case-study analyses of human mobility, interaction patterns, and energy management and identify notable differences between our results and those found by other studies.
Despite the tremendous market penetration of smartphones, their utility has been and will remain severely limited by their battery life. A major source of smartphone battery drain is accessing the Internet over cellular or WiFi connection when running various apps and services. Despite much anecdotal evidence of smartphone users experiencing quicker battery drain in poor signal strength, there has been limited understanding of how often smartphone users experience poor signal strength and the quantitative impact of poor signal strength on the phone battery drain. The answers to such questions are essential for diagnosing and improving cellular network services and smartphone battery life and help to build more accurate online power models for smartphones, which are building blocks for energy profiling and optimization of smartphone apps. In this paper, we conduct the first measurement and modeling study of the impact of wireless signal strength on smartphone energy consumption. Our study makes four contributions. First, through analyzing traces collected on 3785 smartphones for at least one month, we show that poor signal strength of both 3G and WiFi is routinely experienced by smartphone users, both spatially and temporally. Second, we quantify the extra energy consumption on data transfer induced by poor wireless signal strength. Third, we develop a new power model for WiFi and 3G that incorporates the signal strength factor and significantly improves the modeling accuracy over the previous state of the art. Finally, we perform what-if analysis to quantify the potential energy savings from opportunistically delaying network traffic by exploring the dynamics of signal strength experienced by users.
We collected usage information from 12,500 Android devices in the wild over the course of nearly 2 years. Our dataset contains 53 billion data points from 894 models of devices running 687 versions of Android. Processing the collected data presents a number of challenges ranging from scalability to consistency and privacy considerations. We present our system architecture for collection and analysis of this highly-distributed dataset, discuss how our system can reliably collect time-series data in the presence of unreliable timing information, and discuss issues and lessons learned that we believe apply to many other big data collection projects.
Device Analyzer is an Android app available from the Google Play store. It is designed to collect a large range of data from the handset and, with agreement from our contributors, share it with researchers around the world. Researchers can access the data collected, and can also use the platform to support their own user studies. In this paper we provide an overview of the privacy-enhancing techniques used in Device Analzyer, including transparency, consent, purpose, access, withdrawal, and accountability. We also demonstrate the utility of our platform by assessing the security of the Android ecosystem to privilege escalation attacks and determine that 88% of Android devices are, on average, vulnerable to one or more of these type of attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.