The use of oral implants in the rehabilitation of partially and fully edentulous patients is widely accepted even though failures do occur. The chance for implants to integrate can for example be jeopardised by the intra-oral presence of bacteria and concomitant inflammatory reactions. The longevity of osseointegrated implants can be compromised by occlusal overload and/or plaque-induced peri-implantitis, depending on the implant geometry and surface characteristics. Animal studies, cross-sectional and longitudinal observations in man, as well as association studies indicate that peri-implantitis is characterised by a microbiota comparable to that of periodontitis (high proportion of anaerobic Gram-negative rods, motile organisms and spirochetes), but this does not necessarily prove a causal relationship. However, in order to prevent such a bacterial shift, the following measures can be considered: periodontal health in the remaining dentition (to prevent bacterial translocation), the avoidance of deepened peri-implant pockets, and the use of a relatively smooth abutment and implant surface. Finally, periodontitis enhancing factors such as smoking and poor oral hygiene also increase the risk for peri-implantitis. Whether the susceptibility for periodontitis is related to that for peri-implantitis may vary according to the implant type and especially its surface topography.
Bacterial adhesion to intra-oral, hard surfaces is firmly influenced by the surface roughness to these structures. Previous studies showed a remarkable higher subgingival bacterial load on rough surfaces when compared to smooth sites. More recently, the additional effect of a further smoothening of intra-oral hard surfaces on clinical and microbiological parameters was examined in a short-term experiment. The results indicated that a reduction in surface roughness below R(a) = 0.2 microns, the so-called "thresholds R(a)", had no further effect on the quantitative/qualitative microbiological adhesion or colonisation, neither supra- nor subgingivally. This study aims to examine the long-term effects of smoothening intra-oral hard transgingival surfaces. In 6 patients expecting an overdenture in the lower jaw, supported by endosseus titanium implants, 2 different abutments (transmucosal part of the implant): a standard machined titanium (R(a) = 0.2 microns) and one highly polished and made of a ceramic material (R(a) = 0.06 microns) were randomly installed. After 3 months of intra-oral exposure, supra- and subgingival plaque samples from both abutments were compared with each other by means of differential phase-contrast microscopy (DPCM). Clinical periodontal parameters (probing depth, gingival recession, bleeding upon probing and Periotest-value) were recorded around each abutment. After 12 months, the supra- and subgingival samples were additionally cultured in aerobic, CO2-enriched and anaerobic conditions. The same clinical parameters as at the 3-month interval were recorded after 12 months. At 3 months, spirochetes and motile organisms were only detected subgingivally around the titanium abutments. After 12 months, however, both abutment-types harboured equal proportions of spirochetes and motile organisms, both supra- and subgingivally. The microbial culturing (month 12) failed to detect large inter-abutment differences. The differences in number of colony- forming units (aerobic and anaerobic) were within one division of a logarithmic scale. The aerobic culture data showed a higher proportion of Gram-negative organisms in the subgingival flora of the rougher abutments. From the group of potentially "pathogenic" bacteria, only Prevotella intermedia and Fusobacterium nucleatum were detected for anaerobic culturing and again the inter-abutment differences were negligible. Clinically, the smoothest abutment showed a slightly higher increase in probing depth between months 3 and 12, and more bleeding on probing. The present results confirm the findings of our previous short-term study, indicating that a further reduction of the surface roughness, below a certain "threshold R(a)" (0.2 microns), has no major impact on the supra- and subgingival microbial composition.
The indication for the use of oral implants should sometimes be reconsidered when alternative prosthetic treatments are available in the presence of possibly interfering systemic or local factors.
Previous in vivo studies suggested that a high substratum surface free energy (s.f.e.) and an increased surface roughness facilitate the supragingival plaque accumulation. It is the aim of this clinical trial to explore the "relative" effect of a combination of these surface characteristics on plaque growth. 2 strips, one made of fluorethylenepropylene (FEP) and the other made of cellulose acetate (CA) (polymers with surface free energies of 20 and 58 erg/cm2, respectively) were stuck to the labial surface of the central incisors of 16 volunteers. Half the surface of each strip was smooth (Ra +/- 0.1 microns) and the other half was rough (Ra +/- 2.2 microns). The undisturbed plaque formation on these strips was followed over a period of 6 days. The plaque extension at day 3 and 6 was scored planimetrically from color slides. Finally, of 6 subjects samples were taken from the strips as well as from a neighbouring smooth tooth surface (s.f.e. 88 erg/cm2; Ra +/- 0.14 microns). These samples were analysed with a light microscope to score the proportion of coccoid cells, and small, medium, and large rods or fusiform bacteria. At day 3, a significant difference in plaque accumulation was only obtained when a rough surface was compared with a smooth surface. However, at day 6, significantly less plaque was recorded on FEP smooth (19.4%) when compared with CA smooth (39.5%). Between FEP rough (96.8%) and CA rough (98.2%), no significant difference appeared.(ABSTRACT TRUNCATED AT 250 WORDS)
These findings suggest that the benefits of a "one-stage full-mouth disinfection" in the treatment of patients suffering from severe adult periodontitis probably results from the full-mouth scaling and root planing within 24 h rather than the beneficial effect of chlorhexidine. The raise in body temperature the second day after the full-mouth scaling and root planing seems to indicate a Shwartzman reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.