A method to evaluate the risk of using daylight in museums and cultural heritage exhibitions is presented along this study. Although daylight is an ecological and sustainable source of energy and sometimes also an intrinsic part of the artwork, the use of Natural lighting may cause damages in them due to the difficulty of controlling its variability. The developed method quantifies the damage produced to the artworks by daylight compared to artificial light taking into account the level of radiation and its spectral distribution in space and time by comparison with the damage caused by an Illuminant A (Global Risk Factor). The method, applied to the permanent paintings exhibition in the cloister of the fifteenth century of the Monastery of Santa Maria de El Paular, certifies that the control and exploitation of Natural Light should consider an optimal balance between exposure and damage.
This article aims to find an optimal solution for illuminating cave art, based on the improvement of color reproduction and minimizing the damage caused by visible radiation on the painting. To improve visual perception, a light source with optimal spectral distribution has been calculated. This spectral distribution minimizes the damage, maximizes the colorimetric distance between the color of the rock paintings and the closer stone, and takes into account how it was lit by the author. A mathematical function has been used to optimize the spectral distribution of the light source. With this aim, a tunable red-green-blue (RGB) light emitting diode (LED) luminaire has been used. It has been found that the new calculated lighting of the cave does not alter the environmental conditions by performing a test of algae growth and thermographic measurements.
Cultural heritage is a valuable and characteristic symbol of every country. It should be handled with care and it must be exhaustively investigated and measured with non-destructive techniques. In this chapter, we will talk about different reflectance measurement techniques to obtain the conservation state of the artwork. With this reflectance characterization, conservators, and curators could soon determine the best maintenance procedures for restoration purposes. Also, a new technique for lighting will be discussed, where the artwork can be also photonically restored illuminating with the correct light in the desired area of the artwork using a spectrally selective projection system.
The absorption coefficient of a material is classically determined by measuring the transmittance of a homogeneous sample contained within flat optical faces and under collimated illumination. For arbitrary shapes this method is impracticable. The characterization of inhomogeneous or randomly distributed samples such as granules, powders or fibers suffers the same problem. Alternatively, an integrating cavity permits us to illuminate a sample under a homogenous and isotropic light field where the analysis simplifies. We revisit this strategy and present a new formal basis based on simple radiometric laws and principles. We introduce a new concept to describe the absorption: the optical form factor. We tackle a rigorous treatment of several regular forms, including full absorption range and the reflection at its surfaces. We also model and improve an integrating sphere setup to perform reliable measurements. Altogether, it permits achieving simple but general conclusions for samples with arbitrary shape or spatial distribution, from weak to highly absorbing, expanding the applicability of quantitative absorption spectroscopy. Finally, we validate it by measuring different sample formats made of PMMA: a cube, groups of granules and injection molding loose parts. The absorption coefficient of PMMA varies near three orders of magnitude in the explored range (380-1650 nm).
Fresnel lenses and other faceted or micro-optic devices are increasingly used in multiple applications like solar light concentrators and illumination devices, just to name some representative. However, it seems to be a certain lack of adequate techniques for the assessment of the performance of final fabricated devices. As applications are more exigent this characterization is a must. We provide a technique to characterize the performance of Fresnel lenses, as light collection devices. The basis for the method is a configuration where a camera images the Fresnel lens aperture. The entrance pupil of the camera is situated at the focal spot or the conjugate of a simulated solar source. In this manner, detailed maps of the performance of different Fresnel lenses are obtained for different acceptance angles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.