The 22q11 deletion (or DiGeorge) syndrome (22q11DS), the result of a 1.5-to 3-megabase hemizygous deletion on human chromosome 22, results in dramatically increased susceptibility for ''diseases of cortical connectivity'' thought to arise during development, including schizophrenia and autism. We show that diminished dosage of the genes deleted in the 1.5-megabase 22q11 minimal critical deleted region in a mouse model of 22q11DS specifically compromises neurogenesis and subsequent differentiation in the cerebral cortex. Proliferation of basal, but not apical, progenitors is disrupted, and subsequently, the frequency of layer 2/3, but not layer 5/6, projection neurons is altered. This change is paralleled by aberrant distribution of parvalbuminlabeled interneurons in upper and lower cortical layers. Deletion of Tbx1 or Prodh (22q11 genes independently associated with 22q11DS phenotypes) does not similarly disrupt basal progenitors. However, expression analysis implicates additional 22q11 genes that are selectively expressed in cortical precursors. Thus, diminished 22q11 gene dosage disrupts cortical neurogenesis and interneuron migration. Such developmental disruption may alter cortical circuitry and establish vulnerability for developmental disorders, including schizophrenia and autism. psychiatric disease T he neurodevelopmental hypothesis for diseases of cortical connectivity, initially proposed for schizophrenia (1), and later extended to autism spectrum disorders (2), suggests that anomalous cortical development underlies behavioral pathology. Despite inferred relationships between suspect developmental mechanisms, neuroanatomical or functional changes in patients, and postmortem cortical pathology, to our knowledge, there are no known direct links between specific cortical developmental mechanisms and pathogenesis. The near impossibility of prospective analyses in at-risk human fetuses further complicates rigorous evaluation of the hypothesis. Thus, the hypothesis may be more effectively evaluated in animal models of genetic or environmental risk for relevant diseases. In humans, 22q11 deletion/DiGeorge syndrome (22q11DS) confers the highest known genetic risk for schizophrenia (Ϸ30%) (3, 4), increased susceptibility for autism spectrum disorders (Ϸ25%) (5), and vulnerability for additional behavioral and learning disabilities (Ͼ60%) (5). Brain imaging in 22q11DS patients shows consistent anatomical defects, including reduced cortical gray matter and polymicrogyria (6-8), and postmortem analysis indicates cellular pathology associated with developmental defects including periventricular heteropias (9). We found that diminished 22q11 gene dosage in a 22q11DS mouse model compromises specific cortical neural stem cells, basal progenitors, and alters frequency and distribution of cortical projection neurons and GABAergic interneurons. These phenotypes suggest a link between a genomic lesion, altered cortical development, and subsequent changes in cortical circuitry that likely intensify risk for behavioral diso...
Six genes in the 1.5 MB region of chromosome 22 deleted in DiGeorge/22q11 Deletion Syndrome -Mrpl40, Prodh, Slc25a1, Txnrd2, T10, and Zdhhc8-encode mitochondrial proteins. All six genes are expressed in the brain, and maximal expression coincides with peak forebrain synaptogenesis shortly after birth. Furthermore, their protein products are associated with brain mitochondria, including those in synaptic terminals. Among the six, only Zddhc8 influences mitochondria-regulated apoptosis when overexpressed, and appears to interact biochemically with established mitochondrial proteins. Zdhhc8 has an apparent interaction with Uqcrc1, a component of mitochondrial complex III. The two proteins are coincidently expressed in presynaptic processes; however, Zdhhc8 is more frequently seen in glutamatergic terminals. 22q11 deletion may alter metabolic properties of cortical mitochondria during early post-natal life, since expression complex III components, including Uqcrc1, is significantly increased at birth in a mouse model of 22q11 deletion, and declines to normal values in adulthood. Our results suggest that altered dosage of one, or several 22q11 mitochondrial genes, particularly during early postnatal cortical development, may disrupt neuronal metabolism or synaptic signaling.
Highlights d Cortical connections decrease in a DiGeorge/22q11 deletion syndrome mouse model d Under-connectivity reflects reduced dendrite, axon, and synapse growth d Txrnd2, a 22q11 gene, regulates mitochondrial metabolism and neuron growth d Cortical connections and behavioral deficits are restored by anti-oxidant therapy
Interneurons are thought to be a primary pathogenic target for several behavioral disorders that arise during development, including schizophrenia and autism. It is not known, however, whether genetic lesions associated with these diseases disrupt established molecular mechanisms of interneuron development. We found that diminished 22q11.2 gene dosage-the primary genetic lesion in 22q11.2 deletion syndrome (22q11.2 DS)-specifically compromises the distribution of early-generated parvalbumin-expressing interneurons in the Large Deletion (LgDel) 22q11.2DS mouse model. This change reflects cellautonomous disruption of interneuron migration caused by altered expression of the cytokine C-X-C chemokine receptor type 4 (Cxcr4), an established regulator of this process. Cxcr4 is specifically reduced in LgDel migrating interneurons, and genetic analysis confirms that diminished Cxcr4 alters interneuron migration in LgDel mice. Thus, diminished 22q11.2 gene dosage disrupts cortical circuit development by modifying a critical molecular signaling pathway via Cxcr4 that regulates cortical interneuron migration and placement.
Understanding the developmental etiology of autistic spectrum disorders, attention deficit/hyperactivity disorder and schizophrenia remains a major challenge for establishing new diagnostic and therapeutic approaches to these common, difficult-to-treat diseases that compromise neural circuits in the cerebral cortex. One aspect of this challenge is the breadth and overlap of ASD, ADHD, and SCZ deficits; another is the complexity of mutations associated with each, and a third is the difficulty of analyzing disrupted development in at-risk or affected human fetuses. The identification of distinct genetic syndromes that include behavioral deficits similar to those in ASD, ADHC and SCZ provides a critical starting point for meeting this challenge. We summarize clinical and behavioral impairments in children and adults with one such genetic syndrome, the 22q11.2 Deletion Syndrome, routinely called 22q11DS, caused by micro-deletions of between 1.5 and 3.0 MB on human chromosome 22. Among many syndromic features, including cardiovascular and craniofacial anomalies, 22q11DS patients have a high incidence of brain structural, functional, and behavioral deficits that reflect cerebral cortical dysfunction and fall within the spectrum that defines ASD, ADHD, and SCZ. We show that developmental pathogenesis underlying this apparent genetic “model” syndrome in patients can be defined and analyzed mechanistically using genomically accurate mouse models of the deletion that causes 22q11DS. We conclude that “modeling a model”, in this case 22q11DS as a model for idiopathic ASD, ADHD and SCZ, as well as other behavioral disorders like anxiety frequently seen in 22q11DS patients, in genetically engineered mice provides a foundation for understanding the causes and improving diagnosis and therapy for these disorders of cortical circuit development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.