Cortical development depends on the active integration of cell autonomous and extrinsic cues, but the coordination of these processes is poorly understood. Here, we show that the apical complex protein Pals1 and Pten have opposing roles in localizing the Igf1R to the apical, ventricular domain of cerebral cortical progenitor cells. We found that the cerebrospinal fluid (CSF), which contacts this apical domain, has an age-dependent effect on proliferation, much of which is attributable to Igf2, but that CSF contains other signaling activities as well. CSF samples from patients with glioblastoma multiforme show elevated Igf2 and stimulate stem cell proliferation in an Igf2-dependent manner. Together, our findings demonstrate that the apical complex couples intrinsic and extrinsic signaling, enabling progenitors to sense and respond appropriately to diffusible CSF-borne signals distributed widely throughout the brain. The temporal control of CSF composition may have critical relevance to normal development and neuropathological conditions.
The importance of lateral inhibition mediated by NOTCH signaling is well demonstrated to control neurogenesis both in invertebrates and vertebrates. We have identified the chicken homolog of Drosophila numb, which suppresses NOTCH signaling. We show that chicken NUMB (c-NUMB) protein is localized to the basal cortex of mitotic neuroepithelial cells, suggesting that c-NUMB regulates neurogenesis by the modification of NOTCH signaling through asymmetrical cell division. Consistent with this suggestion, we show (1) that c-NUMB interferes with the nuclear translocation of activated c-NOTCH-1 through direct binding to the PEST sequence in the cytoplasmic domain of c-NOTCH-1 and (2) that c-NUMB interferes with c-NOTCH-1-mediated inhibition of neuronal differentiation.
Parvalbumin inhibitory interneurons (PVIs) are crucial for maintaining proper excitatory/inhibitory balance and high-frequency neuronal synchronization. Their activity supports critical developmental trajectories, sensory and cognitive processing, and social behavior. Despite heterogeneity in the etiology across schizophrenia and autism spectrum disorder, PVI circuits are altered in these psychiatric disorders. Identifying mechanism(s) underlying PVI deficits is essential to establish treatments targeting in particular cognition. On the basis of published and new data, we propose oxidative stress as a common pathological mechanism leading to PVI impairment in schizophrenia and some forms of autism. A series of animal models carrying genetic and/or environmental risks relevant to diverse etiological aspects of these disorders show PVI deficits to be all accompanied by oxidative stress in the anterior cingulate cortex. Specifically, oxidative stress is negatively correlated with the integrity of PVIs and the extracellular perineuronal net enwrapping these interneurons. Oxidative stress may result from dysregulation of systems typically affected in schizophrenia, including glutamatergic, dopaminergic, immune and antioxidant signaling. As convergent end point, redox dysregulation has successfully been targeted to protect PVIs with antioxidants/redox regulators across several animal models. This opens up new perspectives for the use of antioxidant treatments to be applied to at-risk individuals, in close temporal proximity to environmental impacts known to induce oxidative stress.
To account for the complex genetics, the developmental biology, and the late adolescent/early adulthood onset of schizophrenia, the "two-hit" hypothesis has gained increasing attention. In this model, genetic or environmental factors disrupt early central nervous system (CNS) development. These early disruptions produce long-term vulnerability to a "second hit" that then leads to the onset of schizophrenia symptoms. The cell-cell signaling pathways involved in nonaxial induction, morphogenesis, and differentiation in the brain, as well as in the limbs and face, could be targets for a "first hit" during early development. These same pathways, redeployed for neuronal maintenance rather than morphogenesis, may be targets for a "second hit" in the adolescent or adult brain. Furthermore, dysregulation of cell-cell signaling by a "first hit" may prime the CNS for a pathologic response to a "second hit" via the same signaling pathway. Thus, parallel disruption of cell-cell signaling in both the developing and the mature CNS provides a plausible way of integrating genetic, developmental, and environmental factors that contribute to vulnerability and pathogenesis in schizophrenia.
The 22q11 deletion (or DiGeorge) syndrome (22q11DS), the result of a 1.5-to 3-megabase hemizygous deletion on human chromosome 22, results in dramatically increased susceptibility for ''diseases of cortical connectivity'' thought to arise during development, including schizophrenia and autism. We show that diminished dosage of the genes deleted in the 1.5-megabase 22q11 minimal critical deleted region in a mouse model of 22q11DS specifically compromises neurogenesis and subsequent differentiation in the cerebral cortex. Proliferation of basal, but not apical, progenitors is disrupted, and subsequently, the frequency of layer 2/3, but not layer 5/6, projection neurons is altered. This change is paralleled by aberrant distribution of parvalbuminlabeled interneurons in upper and lower cortical layers. Deletion of Tbx1 or Prodh (22q11 genes independently associated with 22q11DS phenotypes) does not similarly disrupt basal progenitors. However, expression analysis implicates additional 22q11 genes that are selectively expressed in cortical precursors. Thus, diminished 22q11 gene dosage disrupts cortical neurogenesis and interneuron migration. Such developmental disruption may alter cortical circuitry and establish vulnerability for developmental disorders, including schizophrenia and autism. psychiatric disease T he neurodevelopmental hypothesis for diseases of cortical connectivity, initially proposed for schizophrenia (1), and later extended to autism spectrum disorders (2), suggests that anomalous cortical development underlies behavioral pathology. Despite inferred relationships between suspect developmental mechanisms, neuroanatomical or functional changes in patients, and postmortem cortical pathology, to our knowledge, there are no known direct links between specific cortical developmental mechanisms and pathogenesis. The near impossibility of prospective analyses in at-risk human fetuses further complicates rigorous evaluation of the hypothesis. Thus, the hypothesis may be more effectively evaluated in animal models of genetic or environmental risk for relevant diseases. In humans, 22q11 deletion/DiGeorge syndrome (22q11DS) confers the highest known genetic risk for schizophrenia (Ϸ30%) (3, 4), increased susceptibility for autism spectrum disorders (Ϸ25%) (5), and vulnerability for additional behavioral and learning disabilities (Ͼ60%) (5). Brain imaging in 22q11DS patients shows consistent anatomical defects, including reduced cortical gray matter and polymicrogyria (6-8), and postmortem analysis indicates cellular pathology associated with developmental defects including periventricular heteropias (9). We found that diminished 22q11 gene dosage in a 22q11DS mouse model compromises specific cortical neural stem cells, basal progenitors, and alters frequency and distribution of cortical projection neurons and GABAergic interneurons. These phenotypes suggest a link between a genomic lesion, altered cortical development, and subsequent changes in cortical circuitry that likely intensify risk for behavioral diso...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.