Plant pathogens secrete proteins, known as effectors, that function in the apoplast and inside plant cells to promote virulence. Effectors can also be detected by cell-surface and cytosolic receptors, resulting in the activation of defence pathways and plant immunity. Our understanding of fungal effector function and detection by immunity receptors is limited largely due to high sequence diversity and lack of identifiable sequence motifs precluding prediction of structure or function. Recent studies have demonstrated that fungal effectors can be grouped into structural classes despite significant sequence variation. Using protein x-ray crystallography, we identify a new structural class of effectors hidden within the secreted in xylem (SIX) effectors from Fusarium oxysporum f. sp. lycopersici (Fol). The recognised effectors Avr1 (SIX4) and Avr3 (SIX1) represent the founding members of the Fol dual-domain (FOLD) effector class. Using AlphaFold ab initio protein structure prediction, benchmarked against the experimentally determined structures, we demonstrate SIX6 and SIX13 are FOLD effectors. We show that the conserved N-domain of Avr1 and Avr3 is sufficient for recognition by their corresponding, but structurally-distinct, immunity receptors. Additional structural prediction and comparison indicate that 11 of the 14 SIX effectors group into four structural families. This revealed that genetically linked effectors are related structurally, and we provide direct evidence for a physical association between one divergently-transcribed effector pair. Collectively, these data indicate that Fol secretes groups of structurally-related molecules during plant infection, an observation that has broad implications for our understanding of pathogen virulence and the engineering of plant immunity receptors.
Bone strength is influenced by many properties intrinsic to bone, including its mass, geometry, and mineralization. To further advance our understanding of the genetic basis of bone strength-related traits, we utilized a large (N=815), moderately (G4) advanced intercross line (AIL) of mice derived from a high-runner selection line (HR) and the C57BL/6J inbred strain. In total, 16 quantitative trait loci (QTL) were identified that affected areal bone mineral density (aBMD) and femoral length and width. Four significant (P<0.05) and one suggestive (P<0.10) QTL were identified for three aBMD measurements: total body, vertebral and femoral. A QTL on Chromosome (Chr.) 3 influenced all three aBMD measures, while the other four QTL were unique to a single measure. A total of 10 significant and one suggestive QTL were identified for femoral length (FL) and two measures of femoral width, anterior-posterior (AP) and medial-lateral (ML). FL QTL were distinct from loci affecting AP and ML width, and of the seven AP QTL, only three affected ML. A QTL on Chr. 8 that explained 7.1% and 4.0% of the variance in AP and ML, respectively, was mapped to a six megabase (Mb) region harboring 12 protein-coding genes. The pattern of haplotype diversity across the QTL region and expression profiles of QTL genes, suggested that of the 12, cadherin 11 (Cdh11) was most likely the causal gene. These findings, when combined with existing data from gene knockouts, identify Cdh11 as a strong candidate gene within which genetic variation may affect bone morphology.
Summary Plant pathogens cause disease through secreted effector proteins, which act to promote infection. Typically, the sequences of effectors provide little functional information and further targeted experimentation is required. Here, we utilized a structure/function approach to study SnTox3, an effector from the necrotrophic fungal pathogen Parastagonospora nodorum, which causes cell death in wheat‐lines carrying the sensitivity gene Snn3. We developed a workflow for the production of SnTox3 in a heterologous host that enabled crystal structure determination and functional studies. We show this approach can be successfully applied to study effectors from other pathogenic fungi. The β‐barrel fold of SnTox3 is a novel fold among fungal effectors. Structure‐guided mutagenesis enabled the identification of residues required for Snn3 recognition. SnTox3 is a pre‐pro‐protein, and the pro‐domain of SnTox3 can be cleaved in vitro by the protease Kex2. Complementing this, an in silico study uncovered the prevalence of a conserved motif (LxxR) in an expanded set of putative pro‐domain‐containing fungal effectors, some of which can be cleaved by Kex2 in vitro. Our in vitro and in silico study suggests that Kex2‐processed pro‐domain (designated here as K2PP) effectors are common in fungi and this may have broad implications for the approaches used to study their functions.
SummaryPlant pathogens cause disease through secreted effector proteins, which act to modulate host physiology and promote infection. Typically, the sequences of effectors provide little functional information and further targeted experimentation is required. Here, we utilised a structure/function approach to study SnTox3, an effector from the necrotrophic fungal pathogen Parastagonospora nodorum, which causes cell death in wheat-lines carrying the sensitivity gene Snn3.We developed a workflow for the production of SnTox3 in a heterologous host that enabled crystal structure determination. We show this approach can be successfully applied to effectors from other pathogenic fungi. Complementing this, an in-silico study uncovered the prevalence of an expanded subclass of effectors from fungi.The β-barrel fold of SnTox3 is a novel fold among fungal effectors. We demonstrate that SnTox3 is a pre-pro-protein and that the protease Kex2 removes the pro-domain. Our in-silico studies suggest that Kex2-processed pro-domain (designated here as K2PP) effectors are common in fungi, and we demonstrate this experimentally for effectors from Fusarium oxysporum f sp. lycopersici.We propose that K2PP effectors are highly prevalent among fungal effectors. The identification and classification of K2PP effectors has broad implications for the approaches used to study their function in fungal virulence.
Plant pathogens secrete proteins, known as effectors, that function in the apoplast or inside plant cells to promote virulence. Effector detection by cell-surface or cytosolic receptors results in the activation of defence pathways and plant immunity. Despite their importance, our general understanding of fungal effector function and detection by immunity receptors remains poor. One complication often associated with effectors is their high sequence diversity and lack of identifiable sequence motifs precluding prediction of structure or function. In recent years, several studies have demonstrated that fungal effectors can be grouped into structural classes, despite significant sequence variation and existence across taxonomic groups. Using protein x-ray crystallography, we identify a new structural class of effectors hidden within the secreted in xylem (SIX) effectors from Fusarium oxysporum f. sp. lycopersici (Fol). The recognised effectors Avr1 (SIX4) and Avr3 (SIX1) represent the founding members of the Fol dual-domain (FOLD) effector class, with members containing two distinct domains. Using AlphaFold2, we predicted the full SIX effector repertoire of Fol and show that SIX6 and SIX13 are also FOLD effectors, which we validated experimentally for SIX6. Based on structural prediction and comparisons, we show that FOLD effectors are present within three divisions of fungi and are expanded in pathogens and symbionts. Further structural comparisons demonstrate that Fol secretes a limited number of structurally related effectors during infection of tomato. This analysis also revealed a structural relationship between transcriptionally co-regulated effector pairs. We make use of the Avr1 structure to understand its recognition by the I receptor, which lead to disease resistance in tomato. This study represents an important advance in our understanding of Fol-tomato, and by extension plant-fungal interactions, which will assist the development of novel control and engineering strategies to combat plant pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.