In vertebrates, including humans, individuals harbor gut microbial communities whose species composition and relative proportions of dominant microbial groups are tremendously varied. Although external and stochastic factors clearly contribute to the individuality of the microbiota, the fundamental principles dictating how environmental factors and host genetic factors combine to shape this complex ecosystem are largely unknown and require systematic study. Here we examined factors that affect microbiota composition in a large (n = 645) mouse advanced intercross line originating from a cross between C57BL/6J and an ICR-derived outbred line (HR). Quantitative pyrosequencing of the microbiota defined a core measurable microbiota (CMM) of 64 conserved taxonomic groups that varied quantitatively across most animals in the population. Although some of this variation can be explained by litter and cohort effects, individual host genotype had a measurable contribution. Testing of the CMM abundances for cosegregation with 530 fully informative SNP markers identified 18 host quantitative trait loci (QTL) that show significant or suggestive genomewide linkage with relative abundances of specific microbial taxa. These QTL affect microbiota composition in three ways; some loci control individual microbial species, some control groups of related taxa, and some have putative pleiotropic effects on groups of distantly related organisms. These data provide clear evidence for the importance of host genetic control in shaping individual microbiome diversity in mammals, a key step toward understanding the factors that govern the assemblages of gut microbiota associated with complex diseases.16S rDNA | pyrosequencing | quantitative trait loci mapping | microbiome phenotyping | population
Studies of rodents have shown that both forced and voluntary chronic exercise cause increased hindlimb bone diameter, mass, and strength. Among species of mammals, "cursoriality" is generally associated with longer limbs as well as relative lengthening of distal limb segments, resulting in an increased metatarsal/femur (MT/F) ratio. Indeed, we show that phylogenetic analyses of previously published data indicate a positive correlation between body mass-corrected home range area and both hindlimb length and MT/F in a sample of 19 species of Carnivora, although only the former is statistically significant in a multiple regression. Therefore, we used an experimental evolution approach to test for possible adaptive changes (in response to selective breeding and/or chronic exercise) in hindlimb bones of four replicate lines of house mice bred for high voluntary wheel running (S lines) for 21 generations and in four nonselected control (C) lines. We examined femur, tibiafibula, and longest metatarsal of males housed either with or without wheel access for 2 months beginning at 25-28 days of age. As expected from previous studies, mice from S lines ran more than C (primarily because the former ran faster) and were smaller in body size (both mass and length). Wheel access reduced body mass (but not length) of both S and C mice. Analysis of covariance (ANCOVA) revealed that body mass was a statistically significant predictor of all bone measures except MT/F ratio; therefore, all results reported are from ANCOVAs. Bone lengths were not significantly affected by either linetype (S vs. C) or wheel access. However, with body mass as a covariate, S mice had significantly thicker femora and tibiafibulae, and wheel access also significantly increased diameters. Mice from S lines also had heavier feet than C, and wheel access increased both foot and tibiafibula mass. Thus, the directions of evolutionary and phenotypic adaptation are generally consistent. Additionally, S-line individuals with the mini-muscle phenotype (homozygous for a Mendelian recessive allele that halves hindlimb muscle mass [Garland et al., 2002, Evolution 56:1,267-1,275]) exhibited significantly longer and thinner femora and tibiafibulae, with no difference in bone masses. Two results were considered surprising. First, no differences were found in the MT/F ratio (the classic indicator of cursoriality). Second, we did not find a significant interaction between linetype and wheel access for any trait, despite the higher running rate of S mice.
Phenotypic plasticity can be broadly defined as the ability of one genotype to produce more than one phenotype when exposed to different environments, as the modification of developmental events by the environment, or as the ability of an individual organism to alter its phenotype in response to changes in environmental conditions. Not surprisingly, the study of phenotypic plasticity is innately interdisciplinary and encompasses aspects of behavior, development, ecology, evolution, genetics, genomics, and multiple physiological systems at various levels of biological organization. From an ecological and evolutionary perspective, phenotypic plasticity may be a powerful means of adaptation and dramatic examples of phenotypic plasticity include predator avoidance, insect wing polymorphisms, the timing of metamorphosis in amphibians, osmoregulation in fishes, and alternative reproductive tactics in male vertebrates. From a human health perspective, documented examples of plasticity most commonly include the results of exercise, training, and/or dieting on human morphology and physiology. Regardless of the discipline, phenotypic plasticity has increasingly become the target of a plethora of investigations with the methodological approaches utilized ranging from the molecular to whole organsimal. In this article, we provide a brief historical outlook on phenotypic plasticity; examine its potential adaptive significance; emphasize recent molecular approaches that provide novel insight into underlying mechanisms, and highlight examples in fishes and insects. Finally, we highlight examples of phenotypic plasticity from a human health perspective and underscore the use of mouse models as a powerful tool in understanding the genetic architecture of phenotypic plasticity.
The response to uniform selection may occur in alternate ways that result in similar performance. We tested for multiple adaptive solutions during artificial selection for high voluntary wheel running in laboratory mice. At generation 43, the four replicate high runner (HR) lines averaged 2.85-fold more revolutions per day as compared with four non-selected control (C) lines, and females ran 1.11-fold more than males, with no sex-by-linetype interaction. Analysis of variance indicated significant differences among C lines but not among HR for revolutions per day. By contrast, average speed varied significantly among HR lines, but not among C, and showed a sex-by-linetype interaction, with the HR/C ratio being 2.02 for males and 2.45 for females. Time spent running varied among both HR and C lines, and showed a sex-by-linetype interaction, with the HR/C ratio being 1.52 for males but only 1.17 for females. Thus, females (speed) and males (speed, but also time) evolved differently, as did the replicate selected lines. Speed and time showed a trade-off among HR but not among C lines. These results demonstrate that uniform selection on a complex trait can cause consistent responses in the trait under direct selection while promoting divergence in the lower-level components of that trait.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.