We consider a minimal scale-invariant extension of the Standard Model of particle physics combined with Unimodular Gravity formulated in [1]. This theory is able to describe not only an inflationary stage, related to the Standard Model Higgs field, but also a late period of Dark Energy domination, associated with an almost massless dilaton. A number of parameters can be fixed by inflationary physics, allowing to make specific predictions for any subsequent period. In particular, we derive a relation between the tilt of the primordial spectrum of scalar fluctuations, ns, and the present value of the equation of state parameter of dark energy, ω 0 DE . We find bounds for the scalar tilt, ns < 0.97, the associated running, −0.0006 < d ln ns/d ln k −0.00015, and for the scalar-totensor ratio, 0.0009 r < 0.0033, which will be critically tested by the results of the Planck mission.
We construct a class of theories which are scale invariant on quantum level in all orders of perturbation theory. In a subclass of these models scale invariance is spontaneously broken, leading to the existence of a massless dilaton. The applications of these results to the problem of stability of the electroweak scale against quantum corrections, to the cosmological constant problem and to dark energy are discussed.Comment: 6 pages, replaced with journal versio
We demonstrate that the combination of the ideas of unimodular gravity, scale invariance, and the existence of an exactly massless dilaton leads to the evolution of the universe supported by present observations: inflation in the past, followed by the radiation and matter dominated stages and accelerated expansion at present. All mass scales in this type of theories come from one and the same source.Comment: 9 pages, 1 figure, replaced with journal versio
We study the general class of gravitational field theories constructed on the basis of scale invariance (and therefore absence of any mass parameters) and invariance under transverse diffeomorphisms (TDiff), which are the 4-volume conserving coordinate transformations. We show that these theories are equivalent to a specific type of scalar-tensor theories of gravity (invariant under all diffeomorphisms) with a number of properties, making them phenomenologically interesting. They contain, in addition to the dimensionless coupling constants of the original theory, an arbitrary dimensionful parameter $\Lambda_0$. This parameter is associated with an integration constant of the equations of motion, similar to the arbitrary cosmological constant appearing in unimodular gravity. We focus on the theories where Newton's constant and the electroweak scale emerge from the spontaneous breaking of scale invariance and are unrelated to $\Lambda_0$. The massless particle spectrum of these theories contains the graviton and a new particle -- dilaton. For $\Lambda_0=0$, the massless dilaton has only derivative couplings to matter fields and the bounds on the existence of a 5th force are easily satisfied. As for the matter fields, we determine the conditions leading to a renormalizable low-energy theory. If $\Lambda_0\neq 0$, scale invariance is broken. The arbitrary constant $\Lambda_0$ produces a "run-away" potential for the dilaton. As a consequence, the dilaton can act as a dynamical dark energy component. We elucidate the origin of the cosmological constant in the class of theories under consideration and formulate the condition leading to its absence. If this condition is satisfied, dark energy is purely dynamical and associated to the dilaton.Comment: 39 pages, no figure
One of the major challenges in modern robotics is controlling micromanipulation by active and adaptive materials. In the respiratory system, such actuation enables pathogen clearance by means of motile cilia. While various types of artificial cilia have been engineered recently, they often involve complex manufacturing protocols and focus on transporting liquids only. Here, soft magnetic carpets are created via an easy self‐assembly route based on the Rosensweig instability. These carpets can transport not only liquids but also solid objects that are larger and heavier than the artificial cilia, using a crowd‐surfing effect.This amphibious transportation is locally and reconfigurably tunable by simple micromagnets or advanced programmable magnetic fields with a high degree of spatial resolution. Two surprising cargo reversal effects are identified and modeled due to collective ciliary motion and nontrivial elastohydrodynamics. While the active carpets are generally applicable to integrated control systems for transport, mixing, and sorting, these effects can also be exploited for microfluidic viscosimetry and elastometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.