Forecasting long-term human motion is a challenging task due to the non-linearity, multi-modality and inherent uncertainty in future trajectories. The underlying scene and past motion of agents can provide useful cues to predict their future motion. However, the heterogeneity of the two inputs poses a challenge for learning a joint representation of the scene and past trajectories. To address this challenge, we propose a model based on grid representations to forecast agent trajectories. We represent the past trajectories of agents using binary 2-D grids, and the underlying scene as a RGB birds-eye view (BEV) image, with an agent-centric frame of reference. We encode the scene and past trajectories using convolutional layers and generate trajectory forecasts using a Convolutional LSTM (ConvLSTM) decoder. Results on the publicly available Stanford Drone Dataset (SDD) show that our model outperforms prior approaches and outputs realistic future trajectories that comply with scene structure and past motion.
Pedestrians and vehicles often share the road in complex inner city traffic. This leads to interactions between the vehicle and pedestrians, with each affecting the other's motion. In order to create robust methods to reason about pedestrian behavior and to design interfaces of communication between self-driving cars and pedestrians we need to better understand such interactions. In this paper, we present a datadriven approach to implicitly model pedestrians' interactions with vehicles, to better predict pedestrian behavior. We propose a Long Short-Term Memory (LSTM) model that takes as input the past trajectories of the pedestrian and ego-vehicle, and pedestrian head orientation, and predicts the future positions of the pedestrian. Our experiments based on a real-world, inner city dataset captured with vehicle mounted cameras, show that the usage of such cues improve pedestrian prediction when compared to a baseline that purely uses the past trajectory of the pedestrian. * This work was done when Daniela A. Ridel was a visiting scholar at the Laboratory for Intelligent and Safe Automobiles
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.