Forecasting the motion of surrounding vehicles is a critical ability for an autonomous vehicle deployed in complex traffic. Motion of all vehicles in a scene is governed by the traffic context, i.e., the motion and relative spatial configuration of neighboring vehicles. In this paper we propose an LSTM encoder-decoder model that uses convolutional social pooling as an improvement to social pooling layers for robustly learning interdependencies in vehicle motion. Additionally, our model outputs a multi-modal predictive distribution over future trajectories based on maneuver classes. We evaluate our model using the publicly available NGSIM US-101 and I-80 datasets. Our results show improvement over the state of the art in terms of RMS values of prediction error and negative log-likelihoods of true future trajectories under the model's predictive distribution. We also present a qualitative analysis of the model's predicted distributions for various traffic scenarios.
To safely and efficiently navigate through complex traffic scenarios, autonomous vehicles need to have the ability to predict the future motion of surrounding vehicles. Multiple interacting agents, the multi-modal nature of driver behavior, and the inherent uncertainty involved in the task make motion prediction of surrounding vehicles a challenging problem. In this paper, we present an LSTM model for interaction aware motion prediction of surrounding vehicles on freeways. Our model assigns confidence values to maneuvers being performed by vehicles and outputs a multi-modal distribution over future motion based on them. We compare our approach with the prior art for vehicle motion prediction on the publicly available NGSIM US-101 and I-80 datasets. Our results show an improvement in terms of RMS values of prediction error. We also present an ablative analysis of the components of our proposed model and analyze the predictions made by the model in complex traffic scenarios.
Reliable prediction of surround vehicle motion is a critical requirement for path planning for autonomous vehicles. In this paper we propose a unified framework for surround vehicle maneuver classification and motion prediction that exploits multiple cues, namely, the estimated motion of vehicles, an understanding of typical motion patterns of freeway traffic and inter-vehicle interaction. We report our results in terms of maneuver classification accuracy and mean and median absolute error of predicted trajectories against the ground truth for real traffic data collected using vehicle mounted sensors on freeways. An ablative analysis is performed to analyze the relative importance of each cue for trajectory prediction. Additionally, an analysis of execution time for the components of the framework is presented. Finally, we present multiple case studies analyzing the outputs of our model for complex traffic scenarios.Index Terms-Maneuver recognition, interaction-aware motion prediction, vehicle mounted cameras, variational gaussian mixture models (VGMM), hidden markov models (HMM)
Continuous estimation the driver's take-over readiness is critical for safe and timely transfer of control during the failure modes of autonomous vehicles. In this paper, we propose a data-driven approach for estimating the driver's take-over readiness based purely on observable cues from invehicle vision sensors. We present an extensive naturalistic drive dataset of drivers in a conditionally autonomous vehicle running on Californian freeways. We collect subjective ratings for the driver's take-over readiness from multiple human observers viewing the sensor feed. Analysis of the ratings in terms of intra-class correlation coefficients (ICCs) shows a high degree of consistency in the ratings across raters. We define a metric for the driver's take-over readiness termed the 'Observable Readiness Index (ORI)' based on the ratings. Finally, we propose an LSTM model for continuous estimation of the driver's ORI based on a holistic representation of the driver's state, capturing gaze, hand, pose and foot activity. Our model estimates the ORI with a mean absolute error of 0.449 on a 5 point scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.