Abstract:The aims of this paper are: (1) to review the current state of the art in the field of cartilage substitution and regeneration; (2) to examine the patented biomaterials being used in preclinical and clinical stages; (3) to explore the potential of polymeric hydrogels for these applications and the reasons that hinder their clinical success. The studies about hydrogels used as potential biomaterials selected for this review are divided into the two major trends in tissue engineering: (1) the use of cell-free biomaterials; and (2) the use of cell seeded biomaterials. Preparation techniques and resulting hydrogel properties are also reviewed. More recent proposals, based on the combination of different polymers and the hybridization process to improve the properties of these materials, are also reviewed. The combination of elements such as scaffolds (cellular solids), matrices (hydrogel-based), growth factors and mechanical stimuli is needed to optimize properties of the required materials in order to facilitate tissue formation, cartilage regeneration and final clinical application. Polymer combinations and hybrids are the most promising materials for this application. Hybrid scaffolds may maximize cell growth and local tissue integration by forming cartilage-like tissue with biomimetic features.
HA-based hybrid hydrogels were successfully developed. The polysaccharide (HA) chains were chemically modified and hybridized via amidation of their carboxylic groups with aminosilane molecules. HA-polysaccharide chains were crosslinked by a 3D siloxane organic-inorganic matrix via sol-gel. The novel inorganic crosslinking network − PDMS SiO ( ) 2 provided to sodium hyaluronate (HA) strong chemical bonds, giving restriction to their natural hydrophilicity and stiffness to its structure (improved rheological properties). It was observed that synthesis conditions such as starting HA concentration solution and temperature determined gelling times, efficiency in the polysaccharide chemical modification and in crosslinking hydrolysis-condensation reactions, resulting in the siloxane organic-inorganic matrix. Drying processes influenced crosslinking in HA hybrid hydrogels, either by enhancing polycondensation reactions or inhibiting them. Room temperature-drying produced more densified hybrid structures. Freeze-drying increased porosity and surface hydroxyl groups −OH ( ) resulting in more Q 3 structural units. 60°C-drying boosted polycondensation of monodendate structural units, enhancing the formation of hybrid − D Q bonds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.