Streptococcus anginosus and the closely related species Streptococcus constellatus and Streptococcus intermedius, are primarily commensals of the mucosa. The true pathogenic potential of this group has been under-recognized for a long time because of difficulties in correct species identification as well as the commensal nature of these species. In recent years, streptococci of the S. anginosus group have been increasingly found as relevant microbial pathogens in abscesses and blood cultures and they play a pathogenic role in cystic fibrosis. Several international studies have shown a surprisingly high frequency of infections caused by the S. anginosus group. Recent studies and a genome-wide comparative analysis suggested the presence of multiple putative virulence factors that are well-known from other streptococcal species. However, very little is known about the molecular basis of pathogenicity in these bacteria. This review summarizes our current knowledge of pathogenicity factors and their regulation in S. anginosus.
Streptococcus anginosus is an emerging pathogen, but little is known about its virulence factors. To detect the genes responsible for β-haemolysis we performed genomic mutagenesis of the β-haemolytic S. anginosus type strain ATCC 12395 using the vector pGhost9:ISS1. Integration site analysis of 15 non-haemolytic mutants identified a gene cluster with high homology to the genes of the streptolysin S (SLS) encoding sag gene cluster of S. pyogenes. The gene cluster harbours 10 open reading frames displaying significant similarities to the S. pyogenes genes sagA-sagI, with the identities on protein level ranging from 38 to 87%. Complementation assays of S. anginosus sagB and sagD integration mutants with the respective genes confirmed their importance for β-haemolysin production and suggest the presence of post-translational modifications in S. anginosus SLS similar to SLS of S. pyogenes. Characterization of the S. anginosus haemolysin in comparison to the S. pyogenes SLS showed that the haemolysin is surface bound, but in contrast to S. pyogenes neither fetal calf serum nor RNA was able to stabilize the haemolysin of S. anginosus in culture supernatants. Inhibition of β-haemolysis by polyethylene glycol of different sizes was carried out, giving no evidence of a pore-forming haemolytic mechanism. Analysis of a whole genome shotgun sequence of Streptococcus constellatus, a closely related streptococcal species that belongs to the S. anginosus group, revealed a similar sag gene cluster. Employing a genomic mutagenesis strategy we were able to determine an SLS encoding gene cluster in S. anginosus and demonstrate its importance for β-haemolysin production in S. anginosus.
Streptococcus anginosus is a commensal of mucous membranes and an emerging human pathogen. Some strains, including the type strain, display a prominent β-hemolytic phenotype. A gene cluster (sag), encoding a variant of streptolysin S (SLS) has recently been identified as the genetic background for β-hemolysin production in S. anginosus. In this study, we further characterized the hemolytic and cytolytic activity of the S. anginosus hemolysin in comparison with other streptococcal hemolysins. The results indicate that SLS of S. anginosus is a broad-range hemolysin able to lyse erythrocytes of different species, including horse, bovine, rabbit and even chicken. The hemolytic activity is temperature dependent, and a down-regulation of the hemolysin expression is induced in the presence of high glucose levels. Survival assays indicate that in contrast to other streptococcal species, S. anginosus does not require SLS for survival in the presence of human granulocytes. Cross-complementation studies using the sagB and sagD genes of Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis demonstrated functional similarities to the S. anginosus SLS. Nevertheless, distinct differences to other streptolysin S variants were noted and provide further insights into the molecular mechanisms of SLS pathogen host interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.